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Experimentally, superpositioning of dynamic properties such as viscosity, relaxation times, or diffusion
coefficients under different conditions of temperature 7, pressure P, and volume V by the scaling variable
TV’ (where y is a material constant) has been reported as a general feature of many kinds of glass-forming
materials. In the present work, molecular dynamics (MD) simulations have been performed to study the
scaling of dynamics near the glass-transition regime of ionic liquids. Scaling in the simulated 1-ethyl-3-
methylimidazolium nitrate (EMIM—NO;) system has been tested over wide ranges of temperatures and
pressures. TV? scaling of the dynamics is well described by master curves with y = 4.0 = 0.2 and 3.8 £ 0.2
for cation and anion, respectively. Structures and Coulombic terms of the corresponding states are found to
be quite similar. The temperature and pressure dependence of the pair correlation function show similar trends
and therefore can be superpositioned onto the master curve. Although the behaviors with y = 4 might be
expected from the relation, ¥ = n/3, for the dynamics with the soft-core-type potential U = &(o/r)", with n
= 12, pair potentials used in the MD simulation have a more complex form, and not all the repulsive terms
can play their roles in the heterogeneous structures determined by ion—ion interactions. Scaling is related to
the common part of effective potentials related to the pair correlation functions, including the many-body

effect in real space.

I. Introduction

Complex relaxations in supercooled liquids and their glass
transitions are important long-standing problems of condensed
matter physics and chemistry.!™ Although supercooled liquids
and glasses including ionic systems show complicated hetero-
geneous dynamics,”~” an existence of a simple scaling behavior
of the dynamic properties, x = 7 (TV”) (where T is tempera-
ture and V is the specific volume), has been reported for many
systems,*"!! where x can be the relaxation time 7 or viscosity
77, while y is a material constant.

In the present work, we have compared the structures and
energies of the various points on the master curve, which show
similar diffusion coefficients. In the case of simpler systems
with the soft-core potential, U = &(o/r)", or Lennard-Jones-type
potentials, scaling is related to the local slope on the repulsive
part of the potential near the potential minimum and has been
explained to originate from the repulsive softness of the potential
parameters used in the simulation.'>!?

A class of materials called room-temperature ionic liquids,
or simply ionic liquids (ILs), whose melting points are below
or near room temperature,'*~!7 has attracted much attention in
the research community because they possess many desirable
properties for applications such as high thermal stability and
negligible vapor pressure. Recently, successful 7V” scaling of
viscosity in ionic liquids has been also reported,”'! where y is
found to be at around 2—4. The structures of systems are
determined by the combinations of cation—cation, cation—anion,
and anion—anion interactions, and the scaling parameter y is
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different from the r~! dependence of the Coulombic term. The
purpose of the present work is to examine the relation between
structures and potential parameters and other factors that affect
y by means of MD simulations in a complex system such as an
ionic liquid. Changes in the structure with temperature and
pressure conditions also are examined in details.

II. Molecular Dynamics Simulations

We study the dynamics of the IL 1-ethyl-3-methyl-imidazo-
lium nitrate (EMIM—NO;) by using the potential functions of
the following form
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similar to those used in previous works of ILs.'872* It is a sum
of bond, angle, and dihedral deformation energies, the pairwise
standard (6,12) Lennard-Jones potential representing the repul-
sive term and van der Waals interactions, and Coulombic
interactions between atoms with charges ¢;. The parameters
therein were taken from the general Amber force field.?> The
program AMBER (ver. 9)* was used. The equilibrated density
was 1.206 g cm™3 at 400 K under atmospheric pressure. The
value is consistent with the experimental value of 1.28 g cm™3
at 293 K*” from consideration of the temperature dependence
of the density.?* In the model system, the charge for each cation
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and anion is assumed to be +1 and —1, respectively, while
partial charges are used on each atom. As shown later, the
Coulombic terms have importance in describing the dynamics
such as diffusion coefficients of the system and modification
of the formal charges on each ion and/or introducing a
polarizability term, which may be necessary for the quantitative
description of the system. This is also consistent with the
discussion previously given in ref 23. Further examination for
the parameters in the repulsive terms is also necessary. Despite
these problems, the present system can be regarded as the useful
model for consideration of general properties of ILs such as
scaling and glass transition. That is, a model of ionic liquids in
MD simulations is not necessarily fully representative of the
real system but is a valid physical system worth examining.

MD simulations were performed using this force field on
smaller systems having 64 EMIM™ and 64 NO;~ with a total
of 1472 atoms and the larger system having 256 EMIM* and
256 NO;~ with a total of 5888 atoms. Results of both systems
will be used for discussion since the system size dependence
of the diffusivity of the system is found to be small, except for
some details. Periodic boundary conditions were imposed, and
Coulomb interactions were calculated using the particle mesh
Ewald method. The system was equilibrated at 3000 K, and
from there, the temperature was gradually decreased.

The time step was either 1 or 2 fs in the simulations of the
NVE or NPT ensembles (using the weak coupling by Berendsen?®%°)
that were carried out up to 2.5 or 10 ns after enough equilibration
time of several nanoseconds at each temperature. The diffusion
coefficients obtained in the NPT runs under atmospheric
conditions are comparable to those obtained for the NVE
ensemble. Temperature and pressure conditions used for the
check of the scaling behaviors will be shown later. Although
not necessarily required to show the scaling behaviors, additional
data points are used in some figures due to the following reasons.
(1) In some analyses, a larger number of data points is required
to reduce the error of the parameter fitting or summations. (2)
Possible covered regions are not the same among thermal,
structural, and transport properties. Especially, at low temper-
ature or under high pressure regions, long-time MD runs are
required to attain a diffusive regime, while a shorter time scale
run was enough to obtain the thermal or structural properties.

III. Results and Discussion

Experimentally, the melting point of the present ionic liquid
is known to be 313 K, and crystallization occurs at about 290
K.?7 Although the system is known to show crystallization, by
rapidly quenching in the simulation (~1°/ps), a change of the
slope is found in the plot of density versus temperature. The
glass-transition temperature of the simulated system determined
from the change is 260 K.

III.A. Scaling Based on the Diffusion Coefficient. Diffusion
coefficients were obtained from the long run at each condition
using the Einstein equation after the subdiffusion regime.
Complicated behavior for the mean-square displacment (MSD)
in several time regions is well-known in ionic systems such as
ionically conducting glasses.*® A similar situation has been found
in several ionic liquids.'®!*?* Examples of the MSD for EMIM™*
ions in several conditions are shown in Figure 1a. Solid (blue)
curves are for the data in ~0.1 MPa at several temperatures. A
dash—dotted (pink) curve is for the data at 510 K (500 MPa),
and a dashed curve (green) is for the data at 800 K (1 GPa).

Some caution is required for the analysis at lower tempera-
tures. At the lowest temperature of 300 K, in the short-time
region, the MSD increases weakly with time because the
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Figure 1. Mean-squared displacements of the EMIM™ ion for the
center of masses motion in EMIM—NOj; under several temperature and
pressure conditions. (a) Solid (blue) curves are for the data in ~0.1
MPa at 600, 500, 400, 370, and 300 K. A dash—dotted (pink) curve is
for the data at 510 K (500 MPa), and a dashed curve is for the data at
800 K (1 GPa). (b) Plot of the data at 370 K (~0.1 MPa) (circles, pale

blue) using the linear scales. A red line is for the fitted one, which is
proportional to time.

EMIM™ ions are caged, and it corresponds to the nearly constant
loss (NCL)*!'3* regime observed in the dielectric loss by a
conductivity relaxation experiment. This caged regime extends
to longer times, and the diffusive regime is not attained up to
the longest time of the simulation. Therefore, such data at low
temperatures are omitted from further consideration of scaling.
The black line in Figure la is for the slope 1 on the double
logarithmic scales, and the deviation from it at a shorter time
scale is usually regarded as the deviation from the normal
diffusion. In Figure 1a, the slope becomes 1 for high-temperature
data at long times. However, a deviation from the slope 1 is
found at long time (after ~1 ns) even after the subdiffusive
regime at 370 K. A corresponding plot of the MSD on the linear
scale (Figure 1b) is proportional to time after ~1 ns. In this
case, the deviation on the double logarithmic scale is not due
to the different time regions but is caused by overlap of the
short-time behavior. Therefore, the data at 370 K and similar
data can be used to calculate the diffusion coefficients by the
Einstein equation. In this case, 10 000 000 steps run with 6t =
1 fs and many initial times (>10000) over wide time windows
were used for averaging.

In Figure 2a, diffusion coefficients for EMIM™ are plotted
against inverse temperature. The temperature dependence of
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Figure 2. (a) The temperature dependence of the diffusion coefficient of
EMIM™ for the center of masses motion in EMIM—NOj is shown by solid
(red) circles. A dashed curve (blue) is fitted to the Vogel—Fulcher—Tammann
(VFT) type, while solid lines (pink) are for power law type functions.
Additional data points (open circles, blue) are also used for fitting. Open
(red) circles are data under pressure. (b) Diffusion coefficients in (a) are
plotted against 1/7V*. Isothermal data at 800 K are shown by open red
circles within open blue squares. Data are normalized for 400 K under
~(0.1 MPa, which is near the inflection point of the diffusivity. Two sets
of data, (a) (600 K, ~0.1 MPa) and (b) (800 K, 500 MPa) and (c) (370 K,
~0.1 MPa) and (d) (450 K, 500 MPa) shown in these Figures are compared
in detail. (c) Scaled plots against 1/7V" of the diffusivity for the anion.
Data are normalized for 400 K under ~0.1 MPa. Filled green squares are
for the temperature dependence, and open green squares are under
pressures. The data for the cations are again shown for the sake of
comparison, where the marks are the same as those in (a) and (b). The
scaling behavior for the anion is similar to that of cation; however, some
differences are observed, as mentioned in the text.
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the diffusion coefficients at ambient pressure (~0.1 MPa) is
shown by the solid (red) filled circles. The best fit to the
Vogel—Fulcher—Tamman (VFT) equation® is shown in the
plot (dashed curve (blue) in Figure 2a). We used additional
data points shown by blue circles in Figure 2a for fitting.

The best-fit parameters for D = Dy exp[E/(T — T,)] obtained
are Dy = 1.22 x 1078 (m?> s71), E = —907.69 (K), and T, =
243.24 (K). Power law fits with inflection are also shown by
solid (pink) lines.

The best-fit parameters obtained in the form of In(D) = A,
+ A(1000/T) are Ay = —17.94 and A; = —5.78 for the high-
temperature regime and Ao = —6.44 and A; = —19.05 for the
low-temperature regime, where D is in m? s~ and T is in K.
The data under high pressure are shown by open (red) circles.

The validity of the scaling behavior D = 7 (TV?) of the data
shown in Figure 2a is demonstrated in Figure 2b, where the
data are plotted against 1/7V?, with v = 4.0. In this plot, data
points at 800 K at 0.1, 500, 1000, 2000, and 4000 MPa are
represented by open red circles within open blue squares. All
data points are found to fall on a master curve; therefore,
diffusion coefficients are well scaled with y = 4.0 & 0.3. The
data for the anions are plotted in Figure 2c. The data for the
cations are again shown for the sake of comparison. A similar
TV relation for the diffusivity for the anion with a slightly
smaller y value (=3.8) is obtained. Therefore, scaling holds for
both of them, except for a small deviation discussed below. This
can be expected from the similar behavior'®?* of diffusion
coefficients of EMIM™' and NO;~ ions. In the temperature
dependence under 0.1 MPa, the cation (filled red circles) and
anion (filled green squares) behave in a similar manner, while
in the pressure dependence, cations (open red circles) are slightly
faster than anions (open green squares) near an inflection in
the plots. Small deviation from the scaling for anions seems to
be related to it. That is, the data for anions under pressure (open
green squares) show a smaller curvature (fragility) compared
with the other data points in Figure 2c.

As shown in previous works,?>?* the slope of the temperature
dependence of the diffusion coefficient changes at around 400
K in the double logarithmic plot, and a similar situation is also
observed in a semilogarithmic plot. The master curve also shows
some curvature or inflection, and similar features are observed
for other systems in both experiments and simulations.”!*!3 To
examine the change in the dynamics, we have studied the
trajectories of the ions. They show complexity reflecting the
geometrical correlation among successive motions.?**® Fractal
dimension of the random walk is a measure of this complexity,
and the rapid increase of the dimension upon decreasing
temperature was found. Inflection in the diffusion coefficient
has been explained as the change from the long-range (acceler-
ated) to short-length-scale motion.>* The long-range motion is
related to the cooperative motion of ions found in the hetero-
geneous dynamics.” This explanation is valid for the master
curve, and it means that the scaling describes both short- and
long-ranged motion. Two sets of data points characterized by
nearly the same value of D at different combinations of 7 and
P (a—b pair and c—d pair) located nearby in the master curve
in Figure 2b are compared in the following section. These pairs
are located in different regimes of the master curve.

The exponent obtained for EMIM*—NO; ™ is similar to the
value for the soft-core potential’’® with n = 12; that is, y =
n/3. Of course, there can be relations between the repulsive
parameters used and the scaling results; however, the repulsive
term with !> dependence in eq 1 is not for ion—ion interaction
of the molecular ions but is for each atom—atom interaction.
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Figure 3. Plot of TV* against the Coulombic energy of the system.
The master curve is found to be stable in the plot. Filled circles (red):
Temperature dependence under ~0.1 MPa. Open circles (red): under
high pressures at several temperatures. Filled squares (green): low-
temperature data under ~0.1 MPa. Corresponding points are not shown
in Figure 2 because diffusive regimes were not obtained during the
observation time.

All atoms cannot respond to the scaling in the complicated
system with heterogeneity, where ion—ion interactions play
important roles. In the present work, we have examined the
effective potential among ions by considering the structure
due to the ion—ion interactions, as well as the importance of
the Coulombic term to be shown later. The underlying effective
potential for ion—ion interaction that is concerned with the
scaling behaviors is expected to be similar to the inverse power
law type of potential rather than the r~' dependence of the
electrostatic term. From the different experimental values of y
for other ILs,>!" n values different from 12 seems to be possible.
Despite the similarity to the soft-core model, it is necessary to
examine carefully the origin of the scaling in these more
complex systems.

Thus, we could reproduce the scaling behaviors as found in
the experiments. The exponent is comparable or larger than
experimentally found values for related systems. We have
examined what part of the potential parameters is important for
the scaling.

III.B. Comparison between Corresponding States on a
Master Curve. In this section, we will show what part of the
energy term is related to the scaling. Energy terms at 400 K
obtained from MD are comparable with those reported by
Popolo and Voth!? obtained by using slightly different potential
parameters. The Coulombic energy (Ec,,) and total potential
energy (Ep), which is a sum of terms in eq 1, for a—b and
c—d pairs are compared. We find that the Coulombic energy
for a (600 K, ~0.1 MPa), Ecom = —281.15 kJ mol™!, is
comparable to that for b (800 K, 500 MPa), Eco, = —278.92
kJ mol~!, while the potential energy of a, Eyo = —139.68 kJ
mol~!, is considerably smaller than that for b, Eyo = —93.31
kJ mol ™.

For the other pair, we found that the Coulombic energies,
Ecou, of ¢ (—299.0 kJ mol ! at 370 K, 0.1 MPa) and d (—298.6
kJ mol ! at 450 K, 500 MPa) are comparable. Ejyo for ¢ (—228.6
kJ mol™') is again different from that for d (—207.6 kJ mol™").
This result suggests that the Coulombic term plays a major role
in the scaling behaviors of ionic liquids.

As shown in Figure 3, when TV” (y = 4.0) is plotted against
the electrostatic energy of the system, the master curve remains
almost stable. That is, the systems in corresponding states on
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the master curve have comparable electrostatic energies. For
the data corresponding to those in Figure 2, there is no
significant change in the slope. Low-temperature data under
~0.1 MPa (330, 200, and 150 K) are also plotted in Figure 3
(filled squares, green), where diffusive regimes were not
obtained during the observation time. The slope for the relation
between the electrostatic energy and 7V” changes near the glass-
transition point (~260 K).

To perform the NVT ensemble simulation, one may prefer
the method by Nosé,*® which ensures the formation of a
canonical ensemble. Related methods such as Nosé—Andersen*’
may be also used for NPT ensemble simulations. However, we
used the weak coupling method to simulate the situation near
the glass transition in the present work. This is because the
extended methods with additional degrees of freedom might
affect the non-Gaussian dynamics'”?? found in ionic liquids.
This problem is common in many systems such as ionics in
glasses and supercooled liquids near the glass-transition regimes.
Further study may be necessary to obtain the difference among
different ensembles, including the algorithm employed.

In Figure 4, pair correlation functions, g(r), of EMIM*—
NO;~, NO;"—NO;", and EMIM™—EMIM™ pairs are compared
for the a—b pair and the c—d pair in Figure 2. Correspondence
is good for both cases. That is, the corresponding states have
comparable pair correlation functions. Correspondence seems
to be excellent especially for a cation—anion pair. Some
differences found in other pairs suggest that the correspondence
in the master curve is mainly governed by the cation—anion
interaction with the shortest distance, and the small differences
in cation—cation and anion—anion pairs are not important for
the scaling, at least for the present system. The correspondence
holds for a limited r region and does not hold for a larger r
region because of the different volumes of the systems in these
pairs. The height of the first peak in the cation—anion pair in
Figure 2a is smaller than that in Figure 2b. This is consistent
with the large difference of the potential and Coulombic
energies. One can find some experimentally obtained g(r)’s
under high-pressure conditions in heterogeneous liquids under
high pressure (~GPa)*' or in ionic liquids under moderate
pressures*? (~MPa).

Thus, we found several characteristics of scaling behaviors
summarized as follows. Similarity in the electrostatic term is
observed when similar behavior on the master curve is found,
while a common exponent controlling the system has an inverse
power law form. Correspondence in the electrostatic term is
related to the similarity of the pair correlation functions for
ion—ion pairs. Scaling is related to both short- and long-length-
scale motions.

III.C. Temperature and Pressure Dependences of Struc-
tures. In Figure 5a, the pressure dependence of g(r) at 800 K
is shown for cation—anion, anion—anion, and cation—cation
pairs, calculated using a center of mass position of each ion.
Additionally, two high-pressure conditions (5000 and 6000 MPa)
are used in Figure 5a. The temperature dependence of the
functions is shown in Figure 5b. In both cases, the distance r is
scaled by the mean distance of the same kind of ions, L, which
is proportional to the length of the simulation box. As already
shown for the two cases, the systems in the corresponding states
have similar structures. One can expect the system with different
conditions to behave in a similar manner if TV” is the same.
The comparison by scaled r is useful to distinguish the changes
in peaks in the first coordination shell. The shape of the first
peaks is found to change, especially in the high-pressure and
low-temperature region. The position of the first peak shifts
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Figure 4. Comparison of the structure of the systems in states having similar D on the master curve. Pair correlation functions of EMIM™—NO; ™,
NO; —NO;~, and EMIMT—EMIM™ from top to bottom for Figure 2a (red dashed curve) and Figure 2b (blue, continuous curve). The function for
the EMIM™—NO;~, NO;~—NO;", and EMIM*—EMIM™ pairs for Figure 2c¢ (green, thick curve) and Figure 2d (blue, dashed curve).

toward larger r with increasing pressure at a fixed temperature.
A similar trend is found for the temperature dependence with
decreasing temperature. Scaling by L might be exact if the
structure is self-similar; however, this is not the case. The
compressibility of the structure with short distance seems to be
different from that for the long-ranged one. The peak height
tends to decreases once and then increases again in both a and
b in Figure 5. Changes compensating for those in the first shell
exist in the second and sequential peaks.

For a cation—cation pair, the shoulder of short distance (~0.6
(4 A)) is found in both Figure 5a and b. This component was
previously assigned for a pair with parallel imidazolium rings.?*
With increasing pressure at 800 K, the shoulder becomes clearer
and shows a maximum at around 5000 MPa. A similar
maximum is found in the temperature dependence. The shoulder
seems to be largest at around 370 K under ~0.1 MPa. In parallel,
changes in the heights of the first peaks are observed. Distortion
in the shape of the first peak is found, especially at low
temperatures and under high pressure. It is interesting to note

that both the smallest height of the first peak in the cation—anion
pair and the largest contribution of the shoulder in cation—cation
pairs are observed near the inflection points of the master curve.
Changes in the longer-ranged structure are found near the
inflection point, and details will be reported elsewhere.

Similarity of the g(r) of systems under different conditions
is remarkable for the first peak of the cation—anion interaction
in the real units rather than in the scaled units. Gradual changes
in the slopes common for increasing temperature and pressure
exist; however, their effects on the scaling exponents are small
if any. Thus, the correspondence holds well, including the
appearance of the sub peaks or the distortion of peaks, except
for some minor details.

As an aside, it is interesting to note that the dynamics in the
nonionic glass-forming liquid, ortho-terphenyl, follow the TV¥
scaling, and the similarity in the structure factors in neutron
scattering experiments under isochronal conditions has been
observed under high pressures.®
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Figure 5. (a) Pressure dependence of the pair correlation function, g(r), at 800 K.Thin (black) curve: 0.1 MPa. Dotted (blue) curve: 500 MPa.
Thick (pale blue) curve: 1000 MPa. Dash—dotted (pink) curve: 4000 MPa. Dashed (red) curve: 5000 MPa. Dash—dotted with larger intervals
(green) curve: 6000 MPa. The distance is scaled by the mean distance of like ions. (b) Temperature dependence of the pair correlation functions,
g(r), at ~0.1 MPa. Thin (black) curve: 800 K. Dotted (blue) curve: 600 K. Dash—dotted (pink) curve: 400 K. Dashed (pale blue) curve: 370 K.
Thick (green) curve: 250 K. Similar changes are found in (a) and (b). The minimum of the peak height in the first peak of g(r) for the cation—anion
pair and the maximum intensity of the shoulder of short distance for the cation—cation pair are found at around the inflection point of the
dynamics.Arrows in the figure mean the directions of increasing pressure and that of increasing temperature.

There are small differences in the shape of g(r) for anion—anion
pairs in Figure 5a and b. The first peak tends to be separated
into broader peaks under high pressure, while this trend is not
clear in the temperature dependence. The change in the curvature
of the g(7)anion—anion N€Ar the first peak is responsible for deviation
from the scaling for anions because motion among anion sites
is affected by it.

In the present work, a given pressure was reached within
several hundred steps using a time step of 1 fs. From the
similarity of the temperature and pressure dependence, it is
suggested that the rate of compression is one of the important
factors to control the glass transition. It will be interesting to
examine if the crystallization will occur or not with a slower
compression rate.

IIL.D. Potential of Mean Force. Comparison of the energies
for the corresponding points in the master curve has revealed

that the correspondence is mainly due to Coulombic energies
and not for the total energy. Thus, the ion—ion level structures
are more important rather than the inner structure of the
molecular ions for the scaling behaviors. Naturally, the cor-
respondence of the dynamics is based on the similarity in the
ion—ion structures because the diffusion coefficient examined
is for ions. Similarity found in the pair correlation functions
means similarity in the potential of the mean force (PMF) W (r),
introduced by Kirkwood,* which is connected to the pair
correlation function g;(r) for ion—ion pair in the following form

Wir) = —kgT'In g,(r) (2)
We have examined it by further analyses. The PMF is playing
an important role in statistical mechanical theories of liquids,*~4¢
such as the reference interaction site model (RISM).*’
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The potential is an effective potential among ions. Actually,
Soper*® has successfully derived the effective potential param-
eters of fluid from the site—site pair correlation function, and
the methods are now widely used (see also section IIL.F for
approaches using effective potentials). Caution should be taken
for the many-body character of the potential if one uses it for
simulations.

Although the MD simulation under pressure in the present
work is performed in the NPT ensemble, the scaling is expected
to hold for different ensembles such as NVT or NVE ensembles,
at least in the liquid state. Here, we consider the Helmholtz-
type free energy, F, in a canonical (NVT) ensemble as a first
approximation.

Generally, for an N-particle system, the force acting for an
ith number of particles is represented as follows* 46

_ oW _ kT 9g(r) _
ar; g(r) or;

U,
ff o exp{—pUy}dr,,,, ..., dry

f...fexp{—ﬁUN}drnH,...,drN

3

where Uy is for the potential energy of N particles and 3 is an
inverse of kgT. In the case of the pair potential, n = 2.

If we use a configurational part of a partition function, Qy,
for N particles

Oy = fy...j;exp{—ﬁUN(rl,rz, oy }dry,dr,, ... dry
4

the Helmholtz type free energy, F, is
F=E—-TS=—kgTIn Q\V,T) 4)

where E = U + K. Here K, E, and S represent the kinetic energy,
internal energy, and entropy, respectively. As shown in eq 4, a
concept of the PMF contains many-body effects a priori and is
related to the free-energy term in eq 5. In the low density limit,
the PMF becomes comparable to a bare potential.

So far, many problems to calculate the free energy have been
pointed out in the literature. If the system has large energy
barriers, preventing an accurate sampling, special methods such
as the umbrella sampling technique might be required.*’ In our
simulations, the function g(r) is reproducible and accurate
enough for the systems under the investigated conditions, and
therefore, we calculate the PMF from the pair correlation
function directly using eq 2.

The potentials, Wii(r), calculated for cation—cation, anion—
anion, and cation—anion pairs from the corresponding g;(r) for
the center of masses of ions at 400 K are shown in Figure 6.
The potential can be regarded as an effective potential among
ions, as already mentioned.

The effective potential thus obtained has the power law
dependence. The fit in the double logarithmic plot is shown in
the inset. Since the linear regions are clearly found for every
pair, it is not difficult to determine the power law exponents
from the “equations of the lines” in the plot, even if the power
law region is limited. It is natural to assume the power law
type function because we are looking for the exponent to explain
the scaling. The power law exponents of the cation—cation,
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Figure 6. Potential of mean force between EMIM™—NO; ™ (pale blue),
NO; —NO;™ (green), and EMIM*—EMIM™ (blue) pairs calculated for
the center of mass of each ion. Black curves are fitted curves of the
power law function. A similar plot on a double logarithmic scale is
shown in an inset. Existence of the power law regions is found clearly.
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Figure 7. Pair correlation functions of different conditions as a function

of r (A). All data shown in Figure 5a and b for cation—anion pairs are
included. Overlaps of slopes are found and marked by an oval.

anion—anion, and cation—anion are found to be —9.0, —5.8,
and —11.0, respectively. As a first approximation, it is probable
that the g(r) of the cation—anion pair having the shortest
distance is important for the scaling including the compres-
sion of the system, although a small difference in y values
between the cation and anion suggests the contribution of
other parts of the structures to the scaling behaviors. From
the slope for the cation—anion pair, y can be estimated by
(11.0/3) ~ 3.7, which is near the value of the exponent equal
to 4.0 = 0.3 obtained by the scaling within a statistic error.

In a plot without scaling of the distance, shown in Figure
7, all data for the cation—anion pair shown in Figure 5 are
included. The positions of the second peaks in Figure 7 are
not the same, while structures at the short distance overlap
considerably. Similar slopes (marked by an oval) of g(r)
under different conditions mean that the PMF with r™" is
common for all data. From eq 2 and the power law
dependence of W;;, we have

—kgTIn g (r) = W o< 1" (6)
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Figure 8. Relation between the Coulombic energy and the excess free
energy of the system at 800 K, both in absolute values. For the free
energy, the value at 800 K under ~0.1 MPa is taken as the standard.
The integral in eq 8 is replaced by the summation using a dV value of
5 cm*/mol.

If one can substitute 7 in eq 6 with s(V/N)!® within a certain
distance, the relation

~Ingy(r) == "'V " (7

is obtained, where s is a constant. That is, g(r) can be
represented as a function of TV”, and a common n governs
the structures within the distance, where r &~ s(V/N)'”® holds.
In this case, scaling can hold without self-similarity of the
whole structure. Even if the scaling affects the relatively long-
ranged structures or dynamics at long times, a scaling-
controlling region is not necessarily required to cover all
regions. This is because the short-range softness determines
the packing of the local structures, and this affects long-
range structures and long-time dynamics. The common region
with a similar slope is necessary to explain the existence of
the common exponent under different conditions. Thus, these
results seem to explain the existence of a common scaling
exponent, although further examination of other systems
might be necessary for a definite conclusion. The explanation
may be also applicable to simpler systems because in a low
density limit, the mean force potential becomes comparable
to a bare potential.

The difference of the Helmholtz free energy F of the system
can be directly obtained from the integration of P dV at constant
temperatures as well as from ion—ion interactions

AF=F, — F,= — UOV'PdV (8)

We calculated it for 7 = 800 K, where the point with 7 =
800 K and 0.1 MPa was taken as a standard. We found good
correlation between the excess free energy, AF, of the system
and the Coulombic energy term, as shown in Figure 8. In the
figure, the integration in eq 8 was substituted for by the
summations, that is IAF| = I2P dVI. The relation between AF
and the Coulombic energy looks like a power law except at the
beginning (<250 MPa). A power law fit is shown by a red
dashed curve. The excess free energy can be related to the
mobility of ions, although the connection with free-energy term
and diffusion dynamics is not simple. According to dynamical
density functional theory,>® the Helmholtz free-energy functional
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can be connected to the self part and distinct part of the van
Hove functions. Further studies using these functions will be
useful. Corresponding points on the master curve have com-
parable Coulombic energies, and similar structures and will have
comparable free energy. This enables us to estimate the energy
of the system at different temperatures using the master curve.

An argument for the Helmholtz-type free energy holds for
the mean behavior of the system and is not necessarily applicable
to the heterogeneous structure and dynamics in a disordered
system, while the reason for the change in the slope of the master
curves is heterogeneous dynamics, as already explained. For
describing heterogeneous dynamics, extended statistics such as
Tsallis statistics’! seems to be required. This is because the
density profile formed by ions can have multifractal structures
consisting of several exponents, as shown in the ionics in lithium
silicate systems.* Since the multifractal structure is connected
with the Tsallis entropy rather than the Boltzmann entropy,
further study including multifractal analysis will be helpful to
understand the effect of the heterogeneity on the free energy
and the dynamics. The multifractal walks in the ionic liquid
have been found and discussed in previous works.>> Multifrac-
tality of the underlying structure of the density profile is
important for consideration of the dynamics. These motions are
concerned with the existence of different length scales, and
therefore, the scaling is valid over wide length scales. This is
consistent with the argument that the scaling behaviors include
many-body terms and possible connections to the PMF.

Scaling is also applied to the motions of wide time scale
regions. Strong correlation between relaxation times of the a
process and the Johari—Goldstein 3 process in the scaled
behaviors in both the temperature and pressure dependence has
been pointed out’>* for glass-forming materials at temperatures
above T,. Below T,, the relaxation times of both processes
depends on the thermodynamic path in the formation of the
glass. Here, the scaling has serious limits.

IILE. Comparison with Other Model Systems. The success
of scaling in the real units is found to be based on the similar
response of the system to temperature and pressure, which can
be connected through the density—temperature variable in the
form of TV”. The scaling law for the inverse power law (soft-
core) potential is known to hold,?” including dynamical proper-
ties in the phase space,*® and n is connected to y of the system.
Correspondence of the different states on the master curve in
the present work is found for the diffusion coefficients not in
the scaled units but in the real units. Obviously, the situation is
different from that in ref 38, where the reduced units are used
for dynamical properties such as the relaxation times. In the
model soft-core system, the scaling is due to the self-similarity
of the system, while the observed scaling law in the present
work is valid for the temperature and pressure dependence
within a system and related to the similarity of the structure of
g(r) for the small r region in the real units. In the present work,
we used the diffusion coefficients, D, for the thermodynamic
scaling. In the experiments, scaling has also been confirmed
for viscosity or the relaxation time for several systems. The
corresponding quantity can be D/T rather than D based on the
Stokes—Einstein law or the related fractional Stokes—Einstein
law3737 of the form of D <(T/5)* or DIT = (1/3)'.

We have confirmed that similar scaling behavior is obtained
when D/T is used, albeit the deviation from the master curve is
slightly larger.

Recently, Bailey et al.’® argued the correlations between
pressure and energy in liquids based on the MD simulations of
many model systems using NVT ensembles. They have reported
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that the correlation for the fluctuations in U and W, where U is
a potential energy and W is a virial of the system, is due to an
effective inverse power law potential, and the correlation is
destroyed by the Coulombic interactions. Our interpretation is
also based on the effective potential, and therefore, some views
are shared with them. The effect of the Coulombic force should
cause the deviation from the dynamical scaling observed in the
soft-core system as they discussed. However, scaling behaviors
in the present work were not destroyed by the Coulombic term.
This is because the scaling law in the present work holds for
structures based on the ion—ion interactions rather than
atom—atom interactions, and it is based on the similarity of the
structure in real space. That is, the physical meaning of the
scaling is not the same as the exact dynamical scaling law in
the soft-core system. A many-body character of g(r) and
heterogeneity of the structures and dynamics also play important
roles in our explanations.

Kanakubo et al.* have reported the diffusion dynamics in
the ionic liquid 1-butyl-3-methylimidazolium hexafluorophos-
phate ([BMIM]PF) measured by NMR spin—echo technique.
The system has relatively large cations. They found that when
the values of the velocity correlation coefficients for a given
isotherm were normalized relative to the corresponding atmo-
spheric pressure values, they collapsed onto a single curve. On
the other hand, Wojnarowska et al.®* have reported some
deviations from the scaling in the verapami hydrochloride, which
is called a protic ionic liquid, by using a dielectric spectroscopy.
The system contains quite larger cations compared with anions.
In the work, they used a conductivity relaxation time instead
of a structural relaxation time or diffusivity. However, if the
mobility of anions and cations is considerably different, one
cannot neglect the differences between conductivity and struc-
tural relaxations. The former will be more affected by the faster
ions, while the latter will be more affected by the slower ions.
Therefore, further examination of heterogeneous systems for
dynamics and/or structures may be helpful to understand the
observed breakdown of the scaling.

IILF. Applicability of Effective Potential Parameters for
Coarse-Grained Dynamics. So far, several attempts to replace
a long-range electrostatic potential energy by the short-range
effective potential have been reported. Izvekov et al.®! have
obtained a soft-core-type potential by the force-matching
methods for water and NaCl, where interaction potentials are
determined on an atomic level. The success of this approach in
different systems seems to be related to the generality of the
scaling properties. Several levels of the coarse-grained potential
parameters without a long-ranged Coulombic term can be
obtained from the scaling properties and/or from the pair
correlation function both by experiment and simulations, in
principle. Applicability of effective potential parameters for
coarse-grained dynamics is an interesting problem of further
study. When it is used for modeling of multiscale systems,
different levels of systems can be connected without changing
the dynamic properties, if the coupling among different levels
of systems is correctly taken into account.

The effective repulsive force found in the ion—ion interactions
can have correlation with the repulsive term in eq 1. One may
consider that the repulsive terms in eq 1 are directly related to
the scaling exponent. From the result of the present work, we
suggest that the repulsive parameters concerned with short
distance for cation—anion pairs are the most important for the
scaling. Therefore, it is worthwhile to check the scaling behavior
by changing the values and combination of exponents in eq 1
in further works. The treatment using ion pairs seems to have
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merit for explaining both the importance of the Coulombic term
and the role of the repulsive term in the scaling at the same
time.

IV. Conclusion

Scaling dynamics in ionic liquids exemplified by
EMIM™—NO;~ have been investigated by molecular dynamics
simulations by using an all-atom model. For the diffusive
dynamics of different temperature and pressure conditions, a
master curve was obtained by scaling of 7V7, with y = 4.0 for
the cation and 3.8 for the anion. Dynamical slowing down
represented by the empirical VFT equation or by the inflection
of the temperature dependence of the diffusion coefficient is
related to the change from longer- to shorter-length-scale
dynamics. The master curve maintains these characteristics, and
therefore, the scaling has many-body characteristics. Corre-
sponding states having the same 7V” show a similarity in a
Coulombic term as well as in structures represented by pair
correlation functions. Actually, pressure-dependent behaviors
of them were quite similar to temperature-dependent behaviors
when we used the real units. We found that the exponent
estimated from the potential of mean force is comparable to
the y. Considering both the simple liquids and the ionic liquids,
the scaling of the dynamics is not necessarily directly related
to the bare interatomic or intermolecular potential, while it
appears to be related to the similarity of the structure and
underlying effective potentials.
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