The Science and Technology of Rubber

Fourth Edition

Edited by

Burak Erman
Department of Chemical and Biological Engineering
Koc University
Rumeli Feneri Yolu 34450 Istanbul, Turkey

James E. Mark
Department of Chemistry
University of Cincinnati
Cincinnati, OH 45221-0172, USA

C. Michael Roland
Naval Research Laboratory
Chemistry Division, Code 6120
Washington, DC, USA
1. **Rubber Elasticity: Basic Concepts and Behavior**
 1.1 Introduction 1
 1.2 Elasticity of a Single Molecule 1
 1.3 Elasticity of a Three-Dimensional Network of Polymer Molecules 5
 1.4 Comparison with Experiment 9
 1.5 Continuum Theory of Rubber Elasticity 11
 1.5.1 Stress-Strain Relations 12
 1.6 Second-Order Stresses 19
 1.7 Elastic Behavior Under Small Deformations 21
 1.8 Some Unsolved Problems in Rubber Elasticity 24
 Acknowledgments 25
 References 25

2. **Polymerization: Elastomer Synthesis**
 2.1 Introduction 27
 2.2 Classification of Polymerization Reactions and Kinetic Considerations 28
 2.2.1 Polyaddition/Polycondensation 29
 2.2.2 Chain Polymerization 31
 2.3 Polyaddition/Polycondensation 32
 2.4 Chain Polymerization by Free Radical Mechanism 34
 2.4.1 General Kinetics 34
 2.4.2 Molecular Weight Distribution 38
 2.4.3 Special Case of Diene Polymerization 39
 2.4.4 Controlled Radical Polymerization 40
 2.5 Emulsion Polymerization 43
 2.5.1 Mechanism and Kinetics 43
 2.5.2 Styrene-Butadiene Rubber 47
 2.5.3 Emulsion Polymerization of Chloroprene 51
 2.6 Copolymerization 54
 2.6.1 Kinetics 54
 2.6.2 Emulsion Copolymerization of Dienes 57
 2.7 Chain Polymerization by Cationic Mechanism 60
 2.7.1 Mechanism and Kinetics 60
 2.7.2 Butyl Rubber 64
 2.7.3 Living Cationic Polymerizations 65
 2.7.4 Other Cationic Polymerizations: Heterocyclic Monomers 66
 2.8 Chain Polymerization by Anionic Mechanism 68
 2.8.1 Mechanism and Kinetics 68
 2.8.2 Chain Microstructure of Polydienes 75
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.8.3</td>
<td>Copolymers of Butadiene</td>
<td>77</td>
</tr>
<tr>
<td>2.8.4</td>
<td>Terminally Functional Polydienes</td>
<td>78</td>
</tr>
<tr>
<td>2.9</td>
<td>Stereospecific Chain Polymerization and Copolymerization by Coordination Catalysts</td>
<td>79</td>
</tr>
<tr>
<td>2.9.1</td>
<td>Mechanism and Kinetics</td>
<td>79</td>
</tr>
<tr>
<td>2.9.2</td>
<td>Ethylene-Propylene Rubbers</td>
<td>83</td>
</tr>
<tr>
<td>2.9.3</td>
<td>Polydienes</td>
<td>85</td>
</tr>
<tr>
<td>2.9.4</td>
<td>Polyalkenamers</td>
<td>86</td>
</tr>
<tr>
<td>2.10</td>
<td>Graft and Block Copolymerization</td>
<td>89</td>
</tr>
<tr>
<td>2.10.1</td>
<td>Graft Copolymerization by Conventional Free Radical Reactions</td>
<td>89</td>
</tr>
<tr>
<td>2.10.2</td>
<td>Block Copolymers by Controlled Radical Mechanisms</td>
<td>92</td>
</tr>
<tr>
<td>2.10.3</td>
<td>Block Copolymers by Anionic Mechanism</td>
<td>93</td>
</tr>
<tr>
<td>2.10.4</td>
<td>Block Copolymers by Cationic Mechanism</td>
<td>97</td>
</tr>
<tr>
<td>2.10.5</td>
<td>Block Copolymers by Ziegler-Natta (Insertion) Mechanism</td>
<td>98</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

3. Structure Characterization in the Science and Technology of Elastomers

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>115</td>
</tr>
<tr>
<td>3.2</td>
<td>Chemical Composition</td>
<td>116</td>
</tr>
<tr>
<td>3.3</td>
<td>Sequence Distribution of Repeat Units</td>
<td>119</td>
</tr>
<tr>
<td>3.4</td>
<td>Chain Architecture</td>
<td>122</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Molecular Weight and Its Distribution</td>
<td>122</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Branching</td>
<td>135</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Gel</td>
<td>138</td>
</tr>
<tr>
<td>3.5</td>
<td>Glass Transition and Secondary Relaxation Processes</td>
<td>140</td>
</tr>
<tr>
<td>3.6</td>
<td>Morphology</td>
<td>145</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Orientation</td>
<td>145</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Blends</td>
<td>148</td>
</tr>
<tr>
<td>3.6.3</td>
<td>Crystallinity</td>
<td>154</td>
</tr>
<tr>
<td>3.6.4</td>
<td>Defects</td>
<td>157</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td></td>
<td>159</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>159</td>
</tr>
</tbody>
</table>

4. The Molecular Basis of Rubberlike Elasticity

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>167</td>
</tr>
<tr>
<td>4.2</td>
<td>Structure of a Typical Network</td>
<td>168</td>
</tr>
<tr>
<td>4.3</td>
<td>Elementary Molecular Theories</td>
<td>169</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Elasticity of the Single Chain</td>
<td>170</td>
</tr>
<tr>
<td>4.3.2</td>
<td>The Elastic Free Energy of the Network</td>
<td>173</td>
</tr>
<tr>
<td>4.3.3</td>
<td>The Reduced Stress and the Elastic Modulus</td>
<td>174</td>
</tr>
<tr>
<td>4.4</td>
<td>More Advanced Molecular Theories</td>
<td>177</td>
</tr>
<tr>
<td>4.4.1</td>
<td>The Constrained Junction Model</td>
<td>177</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Entanglement Models</td>
<td>179</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Contribution of Trapped Entanglements to the Modulus</td>
<td>181</td>
</tr>
</tbody>
</table>
CONTENTS

4.5 Phenomenological Theories and Molecular Structure 182
4.6 Swelling of Networks and Responsive Gels 183
4.7 Enthalpic and Entropic Contributions to Rubber Elasticity: The Force-Temperature Relations 185
4.8 Direct Determination of Molecular Dimensions 187
4.9 Single-Molecule Elasticity 188
4.9.1 Gaussian Versus Non-Gaussian Effects 188
References 190

5. The Viscoelastic Behavior of Rubber and Dynamics of Blends 193
5.1 Introduction 193
5.2 Definitions of Measured Quantities, \(J(T) \), \(G(T) \), and \(G^*(\omega) \); and Spectra \(L(\log \lambda) \) and \(H(\log \tau) \) 198
5.2.1 Creep and Recovery 198
5.2.2 Stress Relaxation 199
5.2.3 Dynamic Mechanical Measurements 199
5.3 The Glass Temperature 202
5.4 Viscoelastic Behavior Above \(T_g \) 203
5.4.1 Isothermal Measurements of Time or Frequency Dependence 203
5.4.2 Temperature Dependence 204
5.4.3 The Equilibrium Compliance \(J_e \) 207
5.5 Viscoelastic Behavior of Other Model Elastomers 207
5.5.1 Fluorinated Hydrocarbon Elastomers ("Viton") 207
5.5.2 Urethane-Crosslinked Polybutadiene Elastomers (Plazek et al., 1988) 213
5.5.3 Comparisons Between Different Elastomers 215
5.5.4 Other Viscoelastic Measurements 216
5.6 Theoretical Interpretation of Viscoelastic Mechanisms and Anomalies 217
5.6.1 Breakdown of Thermorheological Simplicity of Low Molecular Weight Polymer 217
5.6.2 Thermorheological Simplicity of Elastomers 224
5.6.3 Changes of the Segmental Relaxation Time and the Johari-Goldstein Relaxation Time with Crosslink Density 225
5.6.4 Junction Dynamics 225
5.7 Component Dynamics of Highly Asymmetric Polymer Blends 229
5.7.1 Intermolecularly Coupled Segmental Relaxation and Interchain Coupled Chain Dynamics in Highly Asymmetric Polymer Blends 229
5.7.2 Anomalous Component Dynamics of Polymer Blends 233
5.7.3 Explanation of Properties (i)–(ix) 260
5.7.4 Summary 279
References 279
6. Rheological Behavior and Processing of Unvulcanized Rubber

6.1 Rheology
 6.1.1 Introduction
 6.1.2 Basic Concepts

6.2 Linear Viscoelasticity
 6.2.1 Material Constants
 6.2.2 Boltzmann Superposition Principle
 6.2.3 Time-Temperature Equivalence
 6.2.4 Molecular Weight Dependences
 6.2.5 Stress Birefringence

6.3 Nonlinear Viscoelasticity
 6.3.1 Shear Thinning Flow
 6.3.2 Particulate Fillers
 6.3.3 Blends

6.4 Engineering Analysis
 6.4.1 Dimensionless Quantities
 6.4.2 Empirical Rules

6.5 Practical Processing Considerations
 6.5.1 Mixing
 6.5.2 Die Swell
 6.5.3 Tack

Acknowledgment
References

7. Vulcanization

7.1 Introduction
7.2 Definition of Vulcanization
7.3 Effects of Vulcanization on Vulcanizate Properties
7.4 Characterization of the Vulcanization Process
7.5 Vulcanization by Sulfur without Accelerator
7.6 Accelerated-Sulfur Vulcanization
 7.6.1 The Chemistry of Accelerated-Sulfur Vulcanization
 7.6.2 Delayed-Action Accelerated Vulcanization
 7.6.3 The Role of Zinc in Benzothiazole-Accelerated Accelerated Vulcanization
 7.6.4 Achieving Specified Vulcanization Characteristics
 7.6.5 Effects on Adhesion to Brass-Plated Steel
 7.6.6 The Effect on Vulcanizate Properties
 7.6.7 Accelerated-Sulfur Vulcanization of Various Unsaturated Rubbers
 7.6.8 Selected Accelerated-Sulfur System Recipes
7.7 Vulcanization by Phenolic Curatives, Benzoquinone Derivatives, or Bismaleimides
7.8 Vulcanization by the Action of Metal Oxides
7.9 Vulcanization by the Action of Organic Peroxides
7.9.1 Peroxide Vulcanization of Unsaturated Hydrocarbon Elastomers 371
7.9.2 Peroxide Vulcanization of Saturated Hydrocarbon Elastomers 373
7.9.3 Peroxide Vulcanization of Silicone Rubbers 374
7.9.4 Peroxide Vulcanization of Urethane Elastomers 375
7.9.5 Recipes for Peroxide Vulcanization 376

7.10 Dynamic Vulcanization 376
7.10.1 EPDM-Polyolefin Compositions 377
7.10.2 NBR-Nylon Compositions 377
7.10.3 Other Elastomeric Compositions Prepared by Dynamic Vulcanization 378
7.10.4 Technological Applications 378
7.10.5 Extra-High-Performance TPVs 379

References 379

8. Reinforcement of Elastomers by Particulate Fillers 383
8.1 Introduction 383
8.2 Preparation of Fillers 384
8.2.1 Nonreinforcing Fillers 384
8.2.2 Reinforcing Fillers 384
8.3 Morphological and Physicochemical Characterization of Fillers 386
8.3.1 Filler Morphology Characterization 386
8.3.2 Dispersibility 392
8.3.3 Filler Physicochemistry 393
8.4 The Mix: A Nanocomposite of Elastomer and Filler 397
8.4.1 Dispersion, Aggregate Sizes, and Distances 397
8.4.2 Filler-Elastomer Interactions 400
8.5 Mechanical Properties of Filled Rubbers 402
8.5.1 Mechanical Properties in Green State 402
8.5.2 Mechanical Properties in Vulcanized State 404
8.5.3 Applications 411

References 413

9. The Science of Rubber Compounding 417
9.1 Introduction 417
9.2 Polymers 418
9.2.1 Natural Rubber 418
9.2.2 Synthetic Elastomers 420
9.3 Filler Systems 431
9.3.1 Carbon Black Properties 431
9.3.2 Silica and Silicates 438
9.3.3 Chemistry of Silane Coupling Agents 440
9.3.4 Other Filler Systems 443
9.4 Stabilizer Systems 444
9.4.1 Degradation of Rubber 444
10. Strength of Elastomers

10.1 Introduction

10.2 Initiation of Fracture
 10.2.1 Flaws and Stress Raisers
 10.2.2 Stress and Energy Criteria for Rupture
 10.2.3 Tensile Test Piece
 10.2.4 Tear Test Piece

10.3 Threshold Strengths and Extensibilities

10.4 Crack Propagation
 10.4.1 Overview
 10.4.2 Viscoelastic Elastomers
 10.4.3 Strain-Crystallizing Elastomers
 10.4.4 Reinforcement with Fillers
 10.4.5 Repeated Stressing: Dynamic Crack Propagation
 10.4.6 Thermoplastic Elastomers

10.5 Tensile Rupture
 10.5.1 Effects of Rate and Temperature
 10.5.2 The Failure Envelope
 10.5.3 Effect of Degree of Crosslinking
 10.5.4 Strain-Crystallizing Elastomers
 10.5.5 Energy Dissipation and Strength

10.6 Repeated Stressing: Mechanical Fatigue

10.7 Failure Under Multiaxial Stresses
 10.7.1 Critical Plane Hypothesis
 10.7.2 Energy Density Available for Driving Growth of Crack Precursors
 10.7.3 Compression and Shear
 10.7.4 Equibiaxial Tension
11. The Chemical Modification of Polymers 517
11.1 Introduction 517
11.2 Chemical Modification of Polymers within Backbone and Chain Ends 518
11.3 Esterification, Etherification, and Hydrolysis of Polymers 520
11.4 The Hydrogenation of Polymers 523
11.5 Dehalogenation, Elimination, and Halogenation Reactions in Polymers 524
 11.5.1 Dehydrochlorination of Poly(vinyl chloride) 524
 11.5.2 Thermal Elimination 525
 11.5.3 Halogenation of Polymers 526
 11.5.4 Cyclization of Polymers 527
11.6 Other Addition Reactions to Double Bonds 528
 11.6.1 Ethylene Derivatives 528
 11.6.2 The Prins Reaction 530
11.7 Oxidation Reactions of Polymers 530
11.8 Functionalization of Polymers 531
11.9 Miscellaneous Chemical Reactions of Polymers 531
11.10 Block and Graft Copolymerization 532
 11.10.1 Effects on Structure and Properties of Polymers 532
 11.10.2 Block Copolymer Synthesis 534
 11.10.3 Examples 534
 11.10.4 Other Methods of Effecting Mechanicochemical Reactions 535
 11.10.5 Ionic Mechanisms 536
 11.10.6 Graft Copolymer Synthesis 537
 11.10.7 Base Polymer Properties 544
References 545

12. Elastomer Blends 547
12.1 Introduction 547
12.2 Thermodynamics and Solubility Parameters 552
 12.2.1 Flory-Huggins Model 553
 12.2.2 Solubility and Interaction Parameters 554
 12.2.3 Other Models 556
12.3 Preparation 558
12.4 Miscible Elastomer Blends 559
12. Thermodynamics

12.4.1 Thermodynamics 559
12.4.2 Analysis 559
12.4.3 Compositional Gradient Copolymers 562
12.4.4 Distinct Polymers 565
12.4.5 Reactive Elastomers 566

12.5 Immiscible Elastomer Blends

12.5.1 Formation 567
12.5.2 Kinetics of Blend Morphology 567
12.5.3 Analysis 567
12.5.4 Interphase Distribution of Filler, Curatives, and Plasticizers 571
12.5.5 Analysis of Interphase Transfer 576
12.5.6 Compatibilization 577
12.5.7 Properties of Immiscible Blends 579
12.5.8 Applications 582

12.6 Conclusion 583

References 585

13. Thermoplastic Elastomers

13.1 Introduction 591

13.2 Synthesis of Thermoplastic Elastomers

13.2.1 Step-Growth Polymerization: Polyurethanes, Polyether-esters, Polyamides 597
13.2.2 Anionic Polymerization: Styrene-Diene Copolymers 599
13.2.3 Catalytic Polymerization 600
13.2.4 Free Radical Polymerization 600
13.2.5 Molecular Weight and Chain Structure 601

13.3 Morphology of Thermoplastic Elastomers

13.3.1 General Characteristics 604
13.3.2 Studies of Morphology 607

13.4 Properties and Effect of Structure

13.4.1 General Characteristics 620
13.4.2 Mechanical Properties 623
13.4.3 Thermal and Chemical Properties 627

13.5 Thermodynamics of Phase Separation 628

13.6 Thermoplastic Elastomers at Surfaces 633

13.7 Rheology and Processing 641

13.8 Applications 644

References 647

14. Tire Engineering

14.1 Introduction 653
14.2 Tire Types and Performance 653
14.3 Basic Tire Design 656
14.3.1 Tire Construction 656
14.3.2 Tire Components 656

14.4 Tire Engineering 658
14.4.1 Tire Nomenclature and Dimensions 658
14.4.2 Tire Mold Design 661
14.4.3 Cord Tension 666
14.4.4 Tread Design Patterns 667

14.5 Tire Materials 671
14.5.1 Tire Reinforcement 671
14.5.2 Steel Cord 672
14.5.3 Mechanism of Rubber: Brass Wire Adhesion 674
14.5.4 Rayon 677
14.5.5 Nylon 677
14.5.6 Polyester 678
14.5.7 Fiberglass 679
14.5.8 Aramid 679
14.5.9 Tire Cord Construction 680
14.5.10 Fabric Processing 681
14.5.11 Function of Adhesive 683
14.5.12 Rubber Compounding 684

14.6 Tire Testing 685
14.6.1 Laboratory Testing 685
14.6.2 Proving Grounds 688
14.6.3 Commercial Evaluation 688

14.7 Tire manufacturing 688
14.7.1 Compound Processing 689
14.7.2 Calendering 691
14.7.3 Extrusion 691
14.7.4 Tire Building 692
14.7.5 Final Tire Inspection 693

14.8 Summary 694

References 694

15. Recycling of Rubbers 697

15.1 Introduction 697
15.2 Retreading of Tires 700
15.3 Recycling of Rubber Vulcanizates 700
15.3.1 Reclaiming Technology 700
15.3.2 Surface Treatment 703
15.3.3 Grinding and Pulverization Technology 704
15.3.4 Devulcanization Technology 708

15.4 Use of Recycled Rubber 722
15.4.1 General Remarks 722
15.4.2 Use in New Tires 723
15.4.3 Rubber-Recycled Rubber Blends 723
15.4.4 Thermoplastic-Recycled Rubber Blend 730
15.4.5 Concrete Modified by Recycled Rubber 742