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ABSTRACT

A technique to measure the strain distribution of an inflated membrane is described, and applied to natural rubber
inflated to pole biaxial strains of 12%, 26%, and 33%. The radial strain was found to be nearly constant over the entire
surface, while the circumferential strain falls to zero at the edge. Thus, biaxial deformation is limited to a narrow region
in the vicinity of the pole. These results are quite different from (the very limited) data published previously. The stress-
strain behavior was also measured in uniaxial tension, and the strain distribution of the inflated membrane calculated
using finite elements. The experiment results and the modeling were in good agreement.

INTRODUCTION

To predict the service life of a rubber article requires knowledge of the mode, as well as the
magnitude, of the deformations. The strains reflect the interplay between loading and geometry,
and can lead to failure at positions away from the region of maximum strain. For a circular,
inflated elastic membrane, clamped at the edge, the local deformations are a complex function
of radius, from biaxial at the pole to planar extension (pure shear) at the outer radius. The details
of the transition between these two extremes depend on the strain energy function.1

Since inflation and biaxial straining are common in many applications of elastomers, a quan-
titative understanding of this mode of deformation has obvious value. Recently, interest in the
strain distribution in inflating membranes has extended to human pathology, e.g., aneurysms.2,3

However, investigations of the strain distribution in membranes are rare,4 and studies of crack
growth in biaxial deformation yield conflicting conclusions.5,6 The present study was motivated
by the development of an inflated rubber disk as an ejection system for torpedoes on US Navy
Virginia-class submarines.7-9 During fatigue testing, the failure properties were found to be
dependent on the size of the disk. Such a scaling effect indicates that biaxial deformation at the
pole, which is the largest strain, does not necessarily govern the failure.10

BACKGROUND

Inflation of a flat circular elastomeric membrane has become a classical problem in the
mechanics of incompressible materials. The strain distributions in the circumferential (latitude),
εC, and radial (longitude), εR, directions were measured as a function of position by Treloar.4

These results, obtained on a gum natural rubber, are reproduced in Figure 1. The abscissa of the
figure (“degrees from pole”) was defined as the angle between the pole and the latitude line at
the center of curvature of the inflating sheet. Unfortunately, since the position of the center of
curvature was not specified, the original radial position data cannot be unambiguously recovered.
A qualitative relationship between these abscissa values and the normalized radial positions can
be inferred: The pole (center), where the circumferential εC and the radial εR strains are always
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equal, is at zero degrees, while the outer radius corresponds to where εC falls to zero. 

The lowest inflation in Figure 1 (curve A) gives a biaxial strain of about 50%, which is near
the limit of sensitivity. The large scatter makes any conclusions uncertain, even though the strains
for many practical applications fall below this. Data for the higher inflations in Figure 1 are more
reliable, and indicate that a change in the nature of the deformation occurs when the pole biaxi-
al strain is about 4.5. Below this value (curves B, C, and D), the radial and the circumferential
deformations track closely; that is, the strain is nearly equi-biaxial (i.e., εC ≈ εR), over most of
the disk. On the other hand, when the pole strain exceeds 4.5 (curves E and F), εR is nearly con-
stant, while εC decreases to zero at the edge. Thus, inflation induces a state of pure shear (εR »
εC) over most of the disk. This intriguing result, a strain-dependent deformation mode, requires
explanation.

There have since been a number of analytical investigations of inflated rubber membranes.
Adkins and Rivlin1 employed a Taylor series expansion of the principal extension ratios, to
obtain a numerical solution for the principal stresses and strains. They predicted that different
strain energy functions, such as the Mooney-Rivlin and neo-Hookean forms, will produce
markedly different strain distributions. Subsequently, Hart-Smith and Crisp11 utilized a more
complicated strain energy function to obtain better agreement with Treloar’s experimental data,
while Oden12 employed the finite element method. Haddow et al.13,14 recast the problem in terms
of Lagrangian equilibrium equations, expressed in terms of Biot stresses. Vaughan15 accounted
for prestretch of the membrane, and Wineman and Huntley16 included damage-induced soften-
ing. Taber17 investigated the transition to thick membranes. Recently, Hsu et al.18 converted the
problem to two-dimensional elasticity.

Unfortunately, experimental verification of these theoretical studies is lacking. Feng19 meas-
ured the pressure and pole height of a relaxing, inflated rubber sheet. He compared the results to
a viscoelastic model, but strains were measured only at the pole. Przybylo and Arruda20 pub-
lished experimental profiles of inflated rubber sheets, comparing finite element calculations
employing different constitutive models; however, the distribution of strains was not examined.
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FIG. 1. — Experimental strains reported by Treloar4 (radial, ×××; circumferential, ), along with his fits
(radial, --- circumferential, ). See text for explanation of the abscissa.
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Charrier et al.21 investigated inflation in membranes with various geometries, but no information
was obtained concerning the strain distributions for the reported profiles. Similarly, Hsu et al.22

determined average strains in soft biological membranes, but not strain distributions. Biaxial
inflation has also been employed to determine the strain energy function,23,24 but attention in
these studies focussed on the strain at the pole. To our knowledge, only Treloar4 has published
experimental data concerning the position-dependence of the strain in biaxially-deformed rub-
ber. Moreover, as mentioned above, Treloar’s most accurate results are at large strains.

EXPERIMENTAL

Deproteinized natural rubber (SMR-S from H. A. Astlett Co.) was mixed on a laboratory
mill with 2.8 phr dicumyl peroxide and 1.0 phr of a dihydroquinoline antioxidant. Films of
approximately 0.9 mm thickness were compression molded at 160 ˚C for 60 minutes. Taking care
that the thickness was uniform, fiducial marks (in the form of a fine grid of circular and radial
lines) were printed on a selected region of the film, using a rubber stamp. A circular sample,
diameter 120 mm, was cut from this film.

The outer edge of the sample was lightly clamped into position. The clamping pressure
squeezed a small amount of rubber from beneath the flange, causing slight buckling, estimated
to be equivalent to 2% compression. Inflation of the film with nitrogen was accomplished by dis-
placing a piston inside a cylinder. The pressure was measured via an Omega PX236-005 trans-
ducer. After inflation, the pressure would decrease ca. 5% in ten minutes, and thereafter remain
constant; the latter was taken as the equilibrium value. Repeated inflation cycles gave identical
pressures.

The (true) stress at the pole was found from1

(1)

where P is the pressure; λ the (biaxial) stretch ratio at the surface; and t0 the undeformed film
thickness. The radius of curvature, R, was determined by measuring the vertical rise of the pole.
The strain ε (= λ – 1) was determined from photographs of fiducial marks, as described below.

In addition to biaxial inflation, conventional tensile stress-strain measurements were carried
out (Instron 4206 with Wallace optical extensometer) on strips (90 × 12.7 mm) cut from the
same cured sheet. At the slow strain rate employed, 0.00167 s–1 (0.1 min–1), the extension and
retraction curves were virtually identical, whereby the retraction data were taken to be equilibri-
um. To avoid strain-induced crystallization, the maximum extension was limited to 100%.25

A finite element method26 was implemented using ABAQUS. The membrane was dis-
cretized using 100 3-node axi-symmetric shell elements, each employing a quadratic interpola-
tion function. Translational displacements associated with the node on the membrane periphery
were fixed, and a specified volume of fluid introduced to obtain the desired strain at the pole. No
attempt was made to model localized effects associated with the clamp or buckling.

IMAGE CALIBRATION

In the pole stress-strain measurements, the calibration of fiducial displacements was made
by including a ruler in the photograph of the inflated sheet, held touching the rubber near the
pole. The stretch was determined over a small area about the pole, from an average of eight dis-
placement measurements. However, this procedure proved to be inadequate for larger sections,
because of scaling changes due to (1) changes in the perspective with the viewing distance and
(2) the continually changing angle between the surface normal and the view vector. Particularly
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at low inflation, accurate results required a better calibration.
A representative photograph of the inflated sheet is shown in Figure 2, where the strain at

the pole was approximately 26%. The ring clamp is at the right edge, labeled “A”. The dark lines,
concentric to the ring clamp, are the latitude fiducial lines; the lines perpendicular to these are
the longitude lines. The longitude lines all meet at the pole, out of view, to the left of the picture.
The pixel positions of the intersecting lines were digitized, and these points are indicated by cir-
cles, and superimposed on the photograph. To provide the scale, a section of graph paper was
prepared with a rectangular hole, and affixed to the inflated membrane with a small amount of
silicone grease. This calibration appears in Figure 2 around the outer edges. Points on this scale
were likewise digitized, and are indicated by squares. The distance between the graph paper lines
was 1.27 mm.

Let (Xi,Yi) be the actual position of i, as defined by the graph paper scale on the periphery
of the photograph, and (xi,yi) be its corresponding pixel position. Focussing on the graph scale
along the bottom of Figure 2, the function ∂Xi/∂xi defines the pixel spacing between the lines, in
the horizontal direction. This function is likewise defined by the scale row across the top of
Figure 2. The overall spacing along the x direction, which also changes as a function of y, is
found from the horizontal distance between the corresponding vertical scale, at the left and right
edges. This overall spacing is an average over the entire width, denoted by x̄. The data from for
both scales, ∂Xi/∂xi and x̄, were well described by parabolas, as were ∂Yi/∂yi and ȳ. The fits of the
scale data ∂Xi/∂xi and ∂Yi/∂yi were employed to calculate the actual positions (Xi,Yi), from 

(2)

and
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FIG. 2. — Photograph of sheet inflated to 26% biaxial strain at the pole. The superimposed circles represent the
position of the digitized points on the sheet, and the squares along the border are the digitized positions of the scale.

Z 326 02-C-03 edit  6/6/03  12:26 PM  Page 329



(3)

where x̄0 is the average horizontal spacing at the upper and lower edges, and ȳ0 is the average
vertical spacing at the left and right edges.

Figure 3 compares the pixel positions (xi,yi), shown as filled squares, to the actual positions
(Xi,Yi), shown as open circles. The application of Equations 2 and 3 have straightened the curved
lines of the edge scales. From data set (Xi,Yi), we found the radial and circumferential strains, εR
and εC, from the displacements in the longitude and latitude directions, respectively.

RESULTS AND DISCUSSION

The stress-strain curve, plotted in the Mooney-Rivlin27–30 form of reduced stress f (=
σ/(λ−λ−2), where σ is the engineering stress) as a function of 1/λ, is shown in Figure 4. The max-
imum extension was equal to 2, yielding linear behavior for much of the range, 2.5 > 1/λ ≥ 0.5.
Thus, the Mooney-Rivlin equation,

(4)

where C1 and C2 are constants, is adequate for the low strain levels of interest. Adkins and Rivlin1

also found this form to be in good agreement with experimental measurements on natural rub-
ber. However, as seen in Figure 4, at larger compressive strains (≥ 60%), Equation 4 substan-
tially overestimates the modulus. This behavior is consistently seen in gum rubbers.23,24,31–33
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FIG. 3. — Results of correcting the data in Figure 2 for parabolic calibration. Original pixel positions of the points
and the scale are given as filled circles and squares, respectively. Superimposed on these are the corrected positions

(open circles and squares, respectively). Note that the correction has straightened the originally curved scale at the border.
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Better accuracy can be realized using a general form of the strain energy function suggested by
Rivlin.22 The curvature in the stress-strain response is captured to some extent by molecular the-
ories of rubber deformation, such as the constraint models,34–40 which include the effect of topo-
logical interactions on the microscopic deformation. However, these models still tend to overes-
timate the stress for compression.31–33

The measured strain distributions for three separate inflations, nominally 12%, 26%, and
33% biaxial strain at the pole, are displayed as points in Figure 5. The strain is equi-biaxial up
to a normalized radius value of about 0.2. The circumferential strain falls to zero at the clamp,
while the radial strain remains nearly constant throughout, producing a state of pure shear at the
edge. 
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FIG. 4. — Equilibrium stress-strain data for the gum natural rubber. The solid line is the fit to the Mooney-Rivlin
function, using the indicated coefficients. The deviations in the vicinity of λ = 1 reflect the nature of the fitting

function (Equation 4). At high compressive strain (λ < 0.4), the Mooney-Rivlin description overestimates the stress.

FIG. 5. — Experimentally determined strains as a function of radial position. 
The solid and dashed lines are the finite element results.
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The finite element results, generated with the Mooney-Rivlin coefficients from Figure 4, are
displayed as smooth lines in Figure 5. The agreement with the measured data is within the exper-
imental scatter. At the low strains associated with the present experiments, the finite element cal-
culations are relatively insensitive to the quantity C2/C1, and the radial strains decrease monoto-
nically with radius. At higher strains, the dependence on this ratio increases. As the pole strain
increases, the maximum radial strain does not occur at the pole, but shifts towards the clamp.

Most significant is the limited range of the equi-biaxial region in Figure 5. This is quite dif-
ferent from Treloar’s4 results at moderate, but somewhat higher strains (curves B, C, and D of
Figure 1), which show essentially equi-biaxial strain over most of the membrane. On the other
hand, the data in Figure 5 roughly agree with the lowest strain data of Figure 1 (curve A),
notwithstanding the sensitivity limit. Unfortunately, there is insufficient detail in Reference 4 for
a quantitative comparison.

Strain-crystallization of the natural rubber can exert an influence. Although the strains in the
present experiments were too small, it is likely that crystallization transpires during Treloar’s
measurements at higher strains. Since the strain energy function used in previous modeling
efforts1,11–20,22 excludes this effect, discrepancies between theoretical predictions and Treloar’s
results may be expected for higher strains.

CONCLUSIONS

The strain distribution in an inflated sheet of natural rubber was measured for biaxial strains
as high as 33%. Only near the pole region is a state of equal biaxial deformation attained. While
the radial strain is nearly independent of position, the circumferential strain monotonically
decreases to zero with proximity to the edge. This gives rise to planar extension (pure shear) in
the vicinity of the clamp. These results depart from previously published measurements of
Treloar,4 which suggested that at lower strain, biaxial deformation persists throughout the sheet.
While the reason for this discrepancy is unclear, we emphasize that our sensitivity is much bet-
ter than Treloar’s, and that our measurements are corroborated by finite element calculations.
Our results are consistent with Treloar’s higher strain data, indicating that there is no disconti-
nuity in strain distribution as the degree of inflation increases. Of course, this does not consider
the elastic instabilities observed at very high degrees of inflation.41

A finite element model of the position-dependent strain gave a good fit to the measured data.
Thus, at least for moderate strains, the Mooney-Rivlin equation can adequately describe the
material response, notwithstanding its well-known deficiencies.23,24,31–33 Since the mode of
deformation governs the connection between the strain energy and the amount of energy avail-
able to propagate cracks in rubber, the strain distribution can exert a dominating effect both on
the fatigue lifetime and on the locus of failure. Thus, the present results are relevant to analysis
of the failure properties of rubber subjected to inflation and related biaxial strains.
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