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ABSTRACT

Acoustic properties of an auxetic foam were measured to validate a previously proposed lower bound for Poisson’s

ratio, m� 1/5, inferred from classical two-parameter elasticity theory. This limit differs from the commonly reported lower

limit of�1 for isotropic materials in the linear elastic range. For a foam measured to have a value of m . 0.2, agreement was

found between the measured flexural resonance frequency of a disk sample and the theoretical value. On the other hand, for

an auxetic sample (m , 0), the prediction from the two-parameter theory was significantly in error. Thus, for materials

having m, 1/5 (auxetic foams, as well as very hard solids such as diamond, germanium, and fused quartz), the equations of

classical elasticity are invalid. [doi:10.5254/rct.17.82682]

INTRODUCTION

To derive structure–property relationships of general validity, most laboratory characteriza-

tions of materials are carried out in the linear regime; that is, the sample is in a state of equilibrium,

and the applied perturbation does not drive the material far from equilibrium. For dynamic

measurements, ‘‘not far’’ means the system is confined to states attainable by spontaneous thermal

fluctuations. For elastic mechanical measurements, linearity implies proportionality of stress and

strain. The requirement for a linear, reversible mechanical response determines the amplitude limit

for the perturbation. When linearity prevails and there is no relaxation (no dependence on the rate of

loading), the usual assumption is that the equations of classical elasticity1,2 can be employed. These

constitutive equations relate the various elastic constants, obtained by experiment, to one another.

For an isotropic material, only two of these constants are unique, although a large number can be

defined to describe different experimental configurations. Classical elasticity theory enables any

constant to be calculated from any other two. This article addresses the lower bound for m in order

for the classical theory to be applicable.

Poisson’s ratio is the only elastic constant that is not a ratio of stress to strain or its inverse. Table

I shows the relation of m to the other common, elastic constants.3 These equations are obtained from

classical elasticity. The lower bound on all moduli in Table I is nonzero finite to comply with the

second law of thermodynamics (nonnegative strain energy); however, the lower bound on

Poisson’s ratio, m, is less certain. Expressing m in terms of the bulk modulus B and the shear modulus

G (describing respective changes in volume and shape)

B ¼ 2ð1þ mÞ
3ð1� 2mÞG ð1Þ

the obtained range is1

�1 , m , 1=2 ð2Þ

Previously, we addressed the upper bound on m.4,5 For real materials, m , 0.5, so that the

assumption of incompressibility for rubber is only an approximation. Methods of handling ‘‘near
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compressibility’’ in modeling and finite element analysis have been discussed.6,7 Of interest herein

is the predicted lower bound of�1.

Because all elastic constants are equally valid, pairs other than B and G can be used to derive

limits on m. The most restrictive limit must be the correct one, because relations involving all other

constants would be satisfied. The classical elasticity equation relating the longitudinal, M, and

biaxial, H, moduli is

m ¼ M

2H þ 4M
2

H

M
� 1 6 9� 8

H

M

� �½
" #

ð3Þ

This quadratic equation has two roots; the one consistent with the behavior of most solids (.99%)

yields8

1=5 � m , 1=2 ð4Þ

The inference is that for any material having a Poisson’s ratio less than the lower bound of 0.2 in

Eq. 4, classical elasticity is violated and thus inapplicable.3,8 Ironically, those few materials known

to have m , 0.2, such as diamond, beryllium, and fused quartz, are very hard, which makes

mechanical characterization difficult. As a result, it is for these materials that recourse is made to the

classical elasticity expressions to calculate the desired engineering constants. That is, the theory is

commonly applied in situations for which it appears to be invalid.

In this work, we describe acoustic measurements on open-cell foams. Foams can have a

complicated stress–strain response, especially for deformations involving both tension and

compression, because the latter may induce buckling of the cell walls.9 By compressing

thermoplastic foams above their softening point and releasing the pressure after cooling, foams can

be prepared in which the cell walls are prebuckled.10 Subsequent stretching causes debuckling that

results in lateral expansion of the specimen, whereby m , 0.11 In a previous study,12,13 we showed

that for foams with m� 0.2, the measured m was in good agreement with the value calculated using

the classical elasticity equation

E ¼ 2Gðmþ 1Þ ð5Þ

However, for auxetic foams (m , 0), it was found that Eq. 5 underestimates m by as much as 36%.

Thus, this earlier work12,13 corroborated the restricted limits on m given by Eq. 4, rather than the

usually stated range (Eq. 2).

Given the general acceptance of the classical theory, it is useful to further validate the newly

proposed lower bound of 1/5. Toward that end, we carried out acoustic measurements on two

foams, having either m within the range of Eq. 4 or below the lower bound of 0.2. Our expectation

TABLE I

ISOTROPIC ELASTIC RELATIONS INVOLVING POISSON’S RATIO
a

(m,G,E) E
G ¼ 2ð1þ mÞ (m,B,M) B

M ¼ 1þm
3ð1�mÞ (I,m,G) G

I ¼ 1
2
ð1� 2mÞ

(m,G,B) G
B ¼

3ð1�2mÞ
2ð1þmÞ (H,m,G) H

G ¼
2ð1þmÞ

1�m (I,m,E) E
I ¼ ð1� 2mÞð1þ mÞ

(m,G,M) G
M ¼ 1�2m

2ð1�mÞ (H,m,E) E
H ¼ 1� m (I,m,B) B

I ¼ 1
3
ð1þ mÞ

(m,E,B) E
B ¼ 3ð1� 2mÞ (H,m,B) H

B ¼
3ð1�2mÞ

1�m (I,m,M) M
I ¼ 1� m

(m,E,M) E
M ¼

ð1�2mÞð1þmÞ
1�m (H,m,M) H

M ¼
ð1�2mÞð1þmÞ
ð1�mÞ2 (I,H,m) H

I ¼
ð1�2mÞð1þmÞ

1�m

a E, Young’s modulus; G, shear modulus; B, bulk modulus; M, longitudinal modulus; H, biaxial stress modulus; I, biaxial

strain modulus.
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that calculated engineering properties will be in error for the latter, in accord with the inapplicability

of the classical theory for materials having m , 0.2, is borne out by the acoustic experiments.

EXPERIMENTAL

The polyurethane foam (McMaster-Carr, Robbinsville, NJ) was thermoplastic with a glass

transition temperature around�50 8C. It had an open cell structure with an average pore size of

about 0.4 mm (Figure 1). The material was processed to give auxetic behavior using the following

procedure: isotropic compression for 2 h at 110 8C (58 above the melting point of the hard domains),

followed by cooling to room temperature while under compression. The dimensional recovery was

no more than 10%, and the structure was stable at room temperature. The density of the foam (0.048

g/mL initially) increases with degree of compression, as shown in Figure 2. Compressions equal to

or greater than two were determined to yield auxetic foam. Optical micrographs of the auxetic foam

used for acoustic measurements are also shown in Figure 1. Note that the slight orientation of the

elliptical pores in the as-received foam are absent after compression, although the structure of the

compressed foam is difficult to discern, as observed in other open-cell polyurethane auxetic

foams.14

The material after processing was mechanically isotropic. Young’s modulus and Poisson’s

ratio were measured on samples elongated on an Instron 5500R at a strain rate¼0.002 s�1, with the

low rate causing relaxation to be negligible. This stretching was carried out parallel to the

compression direction, as were the stress–strain measurements. Displacements were determined

from fiducial marks, with a minimum of three sets of marks in both the longitudinal and transverse

directions used to calculate the two elastic constants.

Acoustic measurements on the polyurethane samples were done in an air-filled Bruel & Kjaer

acoustic impedance tube. Circular disks were cut to fit firmly inside of the impedance tube (29 mm

inner diameter), with a 4-microphone configuration15 used to measure the reflection and

transmission characteristics over the frequency range of 0.5–6 kHz.

RESULTS

From the initial slope of the stress–strain curves, we obtain the Young’s moduli listed in Table

II. Poisson’s ratios were determined by measuring the lateral displacement as a function of

FIG. 1. — Optical micrographs showing (left) the as-received foam and (right) the auxetic material. Orientation of the cells is

evident on the left, whereas the morphology of the auxetic foam was essentially isotropic.
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extension (Figure 3). There is a small increase with increasing strain; however, the magnitude of the

change is not greater than the uncertainty in the data. Thus, by extrapolating to zero strain, we obtain

the values given in Table II, with the error bars corresponding to the assumption of invariance of m
with strain.

To obtain the elastic behavior of the foams from acoustic testing, flexural resonances were

identified in the spectral data obtained with the acoustic impedance tube. The flexural resonance

frequency corresponds to a narrow band of enhanced transmission through the sample, as observed,

for example, using a similar setup with silica aerogel.16 Using this approach, the flexural resonance

frequencies can be related to the elastic properties of the foam based on the classical elasticity

equations (Mindlin theory17 for the vibration of a thick elastic disc), that is,16

fres ¼
1

4p
ffiffiffi
3
p cph

a2

1

Rþ S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2p2ðRþ SÞ

p
� 1

h i
ð6Þ

where h is the thickness, a the radius, and the coefficients R and S defined by

R ¼ 1

12

h

a

� �2

; S ¼ 1

6pð1� mÞj2

h

a

� �2

ð7Þ

TABLE II

MECHANICAL AND ACOUSTIC RESULTS FOR FOAMS

Compression

ratio m q, g/mL E, kPa

fres, kHz

ErrorMeasured Eq. 6

1 0.20 6 0.01 0.048 232 6 8 1.34 1.38 3%

3.0 �0.51 6 0.11 0.128 76 6 19 1.01 0.55 84%

FIG. 2. — Density of foam as a function of the volume compression during high-temperature annealing. The error bar

indicates sample variability. There is modest recovery, reflected in values below the dashed line. For compressions of two or

higher, m , 0.
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Here, j ¼ p=
ffiffiffiffiffi
12
p

is the shear correction factor and cp¼ (E/q(1� m2))½ is the compressional

plate wave speed.

Table II compares the calculated and measured fres. There is agreement within the experimental

uncertainty for the foam having m¼0.2. For the auxetic foam, fres calculated using Eq. 6 is a factor of

two smaller than the measured value. This is consistent with the inapplicability of Eq. 6, derived

from classical elasticity, for materials having m , 0.2, that is, outside the range in Eq. 4.

SUMMARY

The acoustic results presented herein corroborate the failure of classical elasticity whenever m
, 1/5, as previously demonstrated from measurements of the Young’s and shear moduli of auxetic

foams.12 Validation of this lower bound requires measurements of three elastic constants. Usually,

Eq. 2 is assumed to be correct, and only two constants are experimentally determined. For example,

in earlier work, various vibrational mode frequencies were used to deduce the shear or bulk moduli,

with the latter used as fitting parameters.18 But because only the fundamental frequency depends on

G or B, but not the change in resonant frequency with mode number, deviations from classical

elastic are not evident; rather, the failure of the classical theory manifests only as undetected error in

the values deduced for the elastic constants.

The sample studied herein had m¼�0.51, which is much less than 0.2; thus, deviations from the

classical theory were substantial. This contrasts with a prior study of fused quartz for which m¼
0.17.19 No discrepancies between measured and calculated elastic constants were apparent,

presumably because the deviations from classical elasticity were too small.19 Potential errors in the

present experiments, due to nonlinearity, viscoelasticity, or an inhomogeneous foam structure,

have been minimized. To wit, (1) the elastic constants were extrapolated to zero strain, with any

uncertainty assessed by comparison to the value obtained by averaging over all strains; (2) the strain

rate employed was sufficiently slow to maintain mechanical equilibrium, as judged from the

reversibility of the stress–strain curve; and (3) fiducial mark displacements were averaged over

about 40 000 cells to avoid problems due to foam inhomogeneity. Of course, any deviations from

FIG. 3. — Poisson’s ratio measured for the compressed foam as a function of extension. Extrapolation to zero strain gives

�0.51, which differs by 0.11 from the average value assuming no influence of strain on Poisson’s ratio. The error bars are the

limit of error.
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the classical constitutive laws due to the design of the experiments would affect equally the analysis

of the conventional (m¼0.2) foam; however, the calculated fres for this sample was in accord with

the experimental values.
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