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An important and oft-utilised viscoelastic property of polymers is their conformance to the time–

temperature superposition principle. However, it is well established that in the glass transition

zone, where both the local segmental and global chain modes contribute to the response,

polymers are thermorheologically complex. Extrapolations of mechanical and other properties

through the glass transition zone thus entail large errors. An alternative procedure that accounts

for the pressure and volume dependences is based on the empirical fact that both local

segmental and global relaxation times of polymers are a function of the product variable, TVc,

where T is temperature, V is specific volume, and c is a material constant. The utility of this scaling

property is described.
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Introduction
The low frequency motions of high molecular weight
(‘entangled’) rubbery polymers directly govern proces-
sing and forming operations and also underlie many
properties of the cured elastomer. Invariably theoretical
models of the dynamics of entangled chains are based on
the idea of reptation (longitudinal ‘snakelike’ diffu-
sion),1,2 which has intuitive appeal and yields many
results in reasonable agreement with experiments.3,4 One
failing of reptation models is in accounting for the effect
of temperature or pressure on the rheology and pro-
cessing of polymer melts. At short times chain segments
move freely within a ‘tube’ of the entanglement, with
these short range motions described by the Rouse
model.5 Rouse motion terminates when the entangle-
ment constraints begin to exert an effect. The reptation
model has two species dependent parameters, the local
friction coefficient, z, which is identical to the Rouse
friction factor, and a parameter characterising the
degree of entanglement. This means that the tempera-
ture dependence of the chain dynamics is governed
entirely by z. Since z is the same as the local friction
coefficient for the segmental motion, the prediction of
reptation models is that the T dependence of the entire
viscoelastic response from the glass transition to
terminal flow is constant. This serves as the basis for
the well known time–temperature superposition princi-
ple, by which master curves of dynamic and transient
mechanical properties are constructed. These master
curves typically provide information about the response
at times ranging from small fractions of a second
through decades, even though the actual data are only

measured over very narrow range (typically 3 or 4
decades).5

Although time–temperature superpositioning is com-
mon and can yield useful predictions, when the data
extend into the glass transition (or softening) zone,
polymers exhibit thermorheological complexity; that is,
the actual behaviour departs significantly from the
superposed master curves. Specifically, the global chain
dynamics vary more weakly with temperature than do
the local segmental modes. First discovered in polystyr-
ene by Plazek,6 the breakdown of the time–temperature
superposition principle is observed in all polymers for
which it has been rigorously tested. However, such a test
requires that data be measured over a range of times or
frequencies that encompasses both the chain motions
and the local segmental modes. This requirement is most
easily met by measurements in the glass transition zone
(viscoelastic softening regime). The breakdown of time–
temperature superpositioning has been demonstrated
in poly(vinyl acetate),7 polypropylene glycol,8 poly-
(phenylmethylsiloxane),9 polybutadiene,10,11 polyisobu-
tylene,12 atactic polypropylene,13 poly(alkyl glycidyl
ether)14 and atactic polypropylene.15 The differing
temperature response near Tg and the similar behaviour
well above Tg are illustrated in Fig. 1 for amorphous
polypropylene.15 Note that well above the glass transi-
tion, the characteristic time constants for the global and
local segmental dynamics become proportional to each
other, so that reliable master curves can be obtained for
high temperature or long time data.

The effect of temperature on the viscoelastic response
is mirrored inversely by the effect of hydrostatic pres-
sure. While more thermal energy enhances the dynamics,
the greater molecular crowding resulting from the
application of pressure slows both the local and global
motions. For polymers the effects of temperature and
density on the dynamics are roughly equal; that is, when
temperature is changed the consequent variation in the
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dynamics is due about equally to changes in thermal
energy and to changes in local packing.16,17 Unfor-
tunately, rheological data on polymers under elevated
pressure are sparse. It is much easier to carry out
dielectric relaxation measurements at high pressure.18 In
this paper, the author describes how dielectric relaxation
times for any condition of temperature and pressure can
be determined from measurements at any other condi-
tion of T and P (including ambient pressure), by exploit-
ing a recently discovered scaling law,18 applicable to the
dynamics of polymers over the entire range of their
equilibrium viscoelastic response. While this scaling law
cannot be used to obtain relaxation times beyond their
measured range, it enables the thermodynamic condi-
tions (e.g. pressure or volume) associated with any given
value of the relaxation time to be predicted from
experiments at ambient pressure.

Thermodynamic scaling
The author illustrates this scaling by using local
segmental relaxation times measured dielectrically as a
function of temperature and pressure for polymethylto-
lylsiloxane (PMTS).19 The data are plotted versus
specific volume in Fig. 2 and it is obvious that the local
segmental dynamics are not defined by volume or
density. However, in Fig. 3 the same data collapse to a
single curve when plotted versus the product of
temperature times specific volume with the latter raised
to a power; i.e.

t~f (TV c) (1)

In this equation f represents some unknown function
and c is a material constant (independent of T, V and
P). The scaling exponent, c55¡0?05 for PMTS, is

determined empirically as the value yielding super-
position of the relaxation times.

In Fig. 4 relaxation times for 11 polymers are plotted
versus TVc. The data superpose well, with values of c
falling in the range from 1?9 for 1,4-polyisoprene to 5?6
for polymethylphenysiloxane.20 Generally, c is smaller
for polymers than for molecular liquids,18 consistent
with the fact that the motions of polymers are less

1 Local segmental relaxation times (filled symbols) and

time–temperature shift factors for global chain motions

(open symbols) for amorphous polypropylene. Data

were obtained by combining dynamic and transient

mechanical, dielectric relaxation and NMR measure-

ments.15 Temperature dependence is steeper for local

modes at low temperature, with curves becoming paral-

lel at higher T

2 Local segmental relaxation times for siloxane poly-

mer.19 Data were measured versus pressure at various

fixed temperatures in range from 4 to 30uC (squares)

and versus temperature at various fixed pressures in

range from 0?1 to 250 MPa (circles). Latter are steeper

because changing T changes both thermal energy and

volume

3 Segmental relaxation times for PMTS from Fig. 2 as a

function of scaling variable TVc with c55?0
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sensitive to volume changes.16,17 The weaker influence of
volume for polymers is ironic, given their central role in
the historical development of free volume models.5 The
smaller c and weaker V dependence reflect the insensi-
tivity of the chain backbone bonds to pressure, as seen in
the small changes in chain end to end distance with
pressure21 and in the small contribution of chain
configurational changes to the compressibility of
polymers.22

Recent molecular dynamics simulations have shown
that the magnitude of c is a measure of the effective
steepness of the intermolecular repulsive potential.23,24

Larger c, or a steeper repulsive potential, implies greater
influence of ‘jamming’ on the dynamics. Thus, macro-
scopic measurements on polymers may reveal quantita-
tive information about the forces between the chain
molecules, an obvious requisite for developing a first
principles model of polymer dynamics.

Scaling exponent from PVT data
If dynamic measurements are carried out at ambient
pressure, in principle t becomes known at all pressures
via equation (1), providing the equation of state (V as a
function of T and P) and the value of c are known. Of
course, if c is obtained by superpositioning of relaxation
times, then the high pressure viscoelastic data are
already available. However, the scaling exponent can
be determined directly from PVT data that extend
through the glass transition, obviating the need for high
pressure relaxation measurements. The relaxation times

can then be calculated with high accuracy for elevated
pressures (or isochoric conditions) from the experimen-
tal t for ambient pressure.

Typically the glass transition temperature is deter-
mined as the pressure dependent temperature at which
the heat capacity or thermal expansion coefficient
exhibits a step change. The measured Tg is rate
dependent and for the usual experimental conditions
corresponds to values of t in the range from 0?1 to
1000 s. With increasing pressure Tg increases; however,
the value of t at the glass transition remains con-
stant.18,25 Since t(Tg) is constant, if follows from the
scaling relation (equation (1)) that TgV c

g is also con-
stant. Thus, by carrying out PVT experiment through
the glass transition, both Tg and Vg are obtained and the
scaling exponent calculated from

c~{
L log Tg

L log Vg

�
�
�
�
P

(2)

It can also be shown that the exponent is given by26,27

c~{
1

Tat(T)
(3)

where at is the thermal expansion coefficient for
constant value of the relaxation time, i.e.

at~V{1 LV

LT

�
�
�
�
t

~V{1
g

LVg

LTg

�
�
�
�
P

(4)

Figure 5 shows PVT data for polyvinylacetate measured
through the glass transition at various pressures. From
these data, the scaling exponent, c52?21¡0?14, can be
obtained using either equations (2) or (3).28
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5 Specific volume of polyvinylacetate measured as a

function of temperature at indicated pressures.28 Solid

symbols denote glass transition determined from inter-

section of rubbery and glassy phase data

4 Scaled local segmental relaxation times for polycyclo-

hexylmethacrylate (c52?5); 1,4-polyisoprene (53?0);

polyvinylethylene (51?9); polyvinylmethylether (52?55);

polyvinylacetate (52?6); polypropylene glycol (52?5);

polyoxybutylene (52?8); diglycidylether of bisphenol A

(52?8); polyphenylglycidyether-co-formaldehyde (53?5);

polymethylphenylsiloxane (55?6); poly[(o-cresyl glycidyl

ether)-co-formaldehyde] (53?3); and PMTS (55?0)18 and

references therein]. Each symbol for a given material

represents a different condition of T and P
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