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Abstract
The lower bound customarily cited for Poisson’s ratio ν, −1, is derived from the relationship
between ν and the bulk and shear moduli in the classical theory of linear elasticity. However,
experimental verification of the theory has been limited to materials having ν > 0.2. From
consideration of the longitudinal and biaxial moduli, we recently determined that the lower
bound on ν for isotropic materials from this theory is actually 1

5 . Herein we generalize this
result, first by analyzing expressions for ν in terms of six common elastic constants, and then
by considering arbitrary strains. The results corroborate that ν > 1

5 for classical linear
elasticity to be applicable. Of course, a few materials exist for which ν < 0.2, thus deviating
from this bound; accurate analysis of their mechanical behavior requires more sophisticated
elasticity models.

PACS numbers: 46.25.−y, 46.05.+b, 62.20.dj

(Some figures may appear in colour only in the online journal)

1. Introduction

The ratio of lateral strain ε22 to longitudinal strain ε11 defines
the elastic constant

ν = −
ε22

ε11
(1)

for a material under uniaxial stress σ11. This constant is
named for Poisson, who defined it in 1829 in his single
constant theory of linear elasticity, in which ν =

1
4 for all

solids [1]. Recent interest in auxetic materials (ν < 0) [2, 3]
and nano-composites, in which Poisson’s ratio is used
to characterize mechanical behavior [4–8], has renewed
attention to this quantity.

Much of the experimental investigations of the
mechanical behavior of isotropic solids in the early 19th
century were devoted to measuring ν, in order to verify
the single constant Poisson idea. Its refutation developed
sporadically; the first evidence appeared in 1848, when ν was
found to be ca. 1

3 for various oxide glasses and brasses [9],
and in 1859, when experiments determined ν = 0.295 for
steel [10]. Unfortunately, other less accurate measurements
supported the theory, and the controversy persisted into

the 1860s. Lamé’s two-constant linear elasticity model for
isotropic materials [11] was adopted by most researchers
soon thereafter, in part because it accommodates variation in
ν [12–14]; however, this did not prove the theory was correct.

According to the classical theory, for an isotropic material
only two elastic constants are unique, so its validation requires
measurement and comparison of three different constants. For
example, the relation

ν =
1

2
−

E

6B
(2)

can be used to compare measured values of Poisson’s
ratio to that determined from Young’s modulus E and the
bulk modulus B. This approach presents two challenges:
(i) highly precise data are required (see review [15]); and
(ii) conventional solids are often nonlinear even at strains as
small as 10−5 [16, 17]. Experimental verification appeared in
the early 1900s [18, 19], with data for iron, tin, aluminum,
copper, silver, platinum and lead [19] conforming to the two-
constant theory (figure 1). In the past 100 years, the
application of this generalized Hooke’s law has been fully
accepted and is universally applied in science and
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Figure 1. Experimental data from Grüneisen [19], demonstrating
the validity of Lamé’s quadratic theory of linear elasticity for
ν > 1/5.

engineering. Thus, it is common practice to limit
characterizations of isotropic solids to two elastic constants,
obtained for example from shear and longitudinal wave speed
measurements [20, 21], with other parameters calculated
from the classical elasticity relations.

The accepted theoretical limits on Poisson’s ratio are
much lower than the experimental range in figure 1, which
means that the theory has actually been verified only for those
materials having ν > 0.2. The conventional limits are found
from [12]

G = B
3(1 − 2ν)

2(1 + ν)
, (3)

where G is the shear modulus. To minimize the strain energy
at equilibrium and avoid spontaneous deformation, G and B
must be positive, leading to the oft-stated ‘thermodynamically
admissible’ range [12, 22]

− 1 < ν <
1

2
. (4)

This derivation of the limits on ν is the obvious one,
considering deformations involving changes in size and shape,
but other elastic constants are equally valid. The actual
thermodynamic limits on ν have never been determined
experimentally, and measurements for isotropic materials
occupy a much narrower range than the conventional limits
(figure 1). Reviews of the literature of more than 3000
measurements on 596 different substances over a wide
range of temperature and pressure, including pure elements,
engineering alloys, polymers, ceramics and glasses, show
that with very few exceptions (e.g. porous quartz or very
hard materials such as diamond and beryllium), ν > 0.2 for
isotropic, homogeneous materials [23, 24]. Thus, the lower
limit in equation (4) does not represent the behavior of most
real materials. This does not mean that real materials cannot
have ν < 0.2, but only that the Lamé theory has not been
experimentally validated for ν < 0.2.

Notwithstanding its conceptual appeal, there is no
mathematical or physical justification for preferring G and
B over other pairs of constants to determine the limits on
Poisson’s ratio. For example, using the classical relation for
ν in terms of the biaxial modulus, H, and the longitudinal
modulus, M (see table 1), we have shown from the roots of

a quadratic expression that the range in equation (4) is split
into [24]

− 1 < ν 6
1

5
, (5a)

1

5
6 ν <

1

2
. (5b)

Since elastic properties are unique, only one range
can be valid; moreover, the upper limit of 1

2 agrees with
experimental data. Thus, this more restrictive upper range,
1
5 6 ν < 1

2 , appears to be the correct limit for classical linear
elasticity, since values of ν still conform to equation (4). The
argument might be made that the range extending to −1 < ν in
equation (5) is mathematically allowed, and hence represents
an acceptable bound. However, rejection of spurious roots is
common when an analysis produces two or more solutions;
physical considerations are applied to eliminate roots that
are false. Examples include the Landau–Lifshitz equation
for the motion of a charge [25], analysis of projectile
trajectories in air [26], Pythagoras’ theorem for right triangles,
and more generally in the solutions of ordinary differential
equations [27]. We also note that a recent theoretical
analysis [28], based on symmetry arguments from elastic
constants that were restricted to linear combinations of the
two Lamé constants, similarly found expressions for ν having
multiple roots; the lower bound on Poisson’s ratio was larger
than −1, namely (1 −

√
2)/2. Thus, two recent analyses

[24, 28] undermine the traditional range of ν for the
generalized Hooke’s law to be valid.

This more restrictive lower bound on Poisson’s ratio in
equation (5b) is important because it means that whenever a
material has ν < 0.2, the equations of linear elasticity cannot
apply; a more sophisticated, and as yet undeveloped model of
elasticity must be invoked to provide relations between elastic
constants for that material. In this work we first extend the
analysis of Mott and Roland [24] to all commonly defined
elastic constants, in order to obtain their associated limits
for Poisson’s ratio. We then generalize these results to any
deformation. Our previous conclusion [24], that the minimum
of ν for an isotropic material is 1

5 , is shown to be general
for materials for which the traditional equations (e.g. Lamé
elasticity model) are valid.

2. Limits on ν from common elastic constants

For an isotropic solid with axial strains ε11, ε22, ε33 and shear
stains γ12, γ23, γ13, the reversible work of deformation is [12]

2W = (λ + 2µ) (ε11 + ε22 + ε33)
2 + µ

(
γ 2

12 + γ 2
13 + γ 2

23

−4ε22ε33 − 4ε33ε11 − 4ε11ε22) , (6)

where λ and µ(= G) are the Lamé constants. (Note defining
the quantities as tensorial shear strains, a factor of 1

2 would
be included for the shear strains on the right-hand side [14].)
Differentiating equation (6) with respect to the strains defines
the stress tensors

∂W

∂ε11
= σ11 = λ(ε11 + ε22 + ε33) + 2µε11,

(7)
∂W

∂γ12
= σ12 = µγ12, etc

2
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Table 1. Relations between elastic constants that include Poisson’s ratio.

Relation Equation Restrictions on ν

ν =
3B − 2G

6B + 2G
(T1) −1 < ν <

1

2

ν =
H − 3B

H − 6B
(T2) −1 < ν <

1

2

ν =
3B − M

3B + M
(T3) −1 < ν < 1

ν =
H − 2G

H + 2G
(T4) −1 < ν < 1

ν =
M − 2G

2M − 2G
(T5) −∞ < ν <

1

2

ν =
1

2
−

E

6B
(T6) −∞ < ν <

1

2

ν =
1

2
−

G

I
(T7) −∞ < ν <

1

2

ν = 1 −
E

H
(T8) −∞ < ν < 1

ν = 1 −
M

I
(T9) −∞ < ν < 1

ν =
E

2G
− 1 (T10) −1 < ν < ∞

ν =
3B

I
− 1 (T11) −1 < ν < ∞

ν =
1

4

[
E

M
− 1 ±

(
E2

M2
− 10

E

M
+ 9

) 1
2
]

(T12) 0 <
E

M
6 1 : −1 < ν < 0 or 0 < ν <

1

2

ν =
1

4

[
H

I
− 1 ±

(
H 2

I 2
− 10

H

I
+ 9

) 1
2
]

(T13) 0 <
H

I
6 1 : −1 < ν < 0 or 0 < ν <

1

2

ν = −
1

4

[
1 ∓

(
9 − 8

E

I

) 1
2
]

(T14) 0 <
E

I
6

9

8
: −1 < ν 6−

1

4
or −

1

4
6 ν <

1

2

ν =
M

2H + 4M

[
2

H

M
− 1 ±

(
9 − 8

H

M

) 1
2
]

(T15) 0 <
H

M
6

9

8
: −1 < ν 6

1

5
or

1

5
6 ν <

1

2

When uniaxial loading is substituted (e.g. σ11 6= 0 and
all other σi j = 0) and defining Young’s modulus as E =

σ11/ε11, the following relations between the elastic constants
are found:

E =
µ(3λ + 2µ)

λ + µ
, ν =

λ

2λ + 2µ
. (8)

This algebraic operation can be carried out for any
deformation or loading geometry, using the corresponding
stiffness, to identify relations between elastic constants [29].
These relations are combined to obtain relations between the
elastic constants, valid for all types of loading. For example,
when substituting longitudinal loading (e.g. ε11 6= 0 and all
other strains = 0) and defining the longitudinal modulus as

M = σ11/ε11, we obtain

M =
1 − ν

(1 − 2ν) (1 + ν)
E . (9)

Table 1 lists all of the equations for Poisson’s ratio
from commonly defined moduli. Included are expressions that
involve the biaxial stress modulus H, defined when σ11 =

σ22 6= 0 and all other σi j = 0, and the biaxial strain modulus
I, defined when ε11 = ε22 6= 0 and all other strains = 0.
I is unusual, but is included here as the counterpart to H.
The second column in the table 1 shows the restrictions on
ν arising from the requirement that all elastic moduli are
greater than zero. It is seen that the conventional limits,
−1 < ν < 1

2 , follow from equations (T1) and (T2). The other

3
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Figure 2. Poisson’s ratio as a function of the ratio of the indicated
elastic constants, with positive roots shown indicated by the solid
lines and negative roots with dashed lines. Also included are the two
roots of equation (13) with y = 1/2 and β = 0. The limits
encompassing all moduli are 1/56 ν < 1/2.

linear expressions lead to wider ranges for ν. The most
restrictive limits for Poisson’s ratio are the governing range,
since all broader ranges are also satisfied (as is, of course, the
requirement that the strain energy be non-negative).

Of special interest are the four quadratic relations,
equations (T12)–(T15). These arise from stress–strain
counterparts, such as E (defined from a stress) and M (defined
from a strain). Note that if E/M is substituted for H/I,
equation (T13) becomes equation (T12), and therefore the two
equations are identical; thus,

E

M
=

H

I
. (10)

Each quadratic relation in table 1 has two roots that limit
the span of Poisson’s ratio. These relations are plotted in
figure 2, with the positive roots denoted by a solid line and the
negative with a dashed line. For all expressions, the roots lie
within the range −1 to 1

2 and converge at smoothly continuous
maxima. Restricting ν to real numbers means that

1. equations (T12) and (T13): 0 < E/M 6 1 with the same
range for H/I. The two roots of this expression have
ranges −1 < ν 6 0 and 06 ν < 1

2 . This equation also
produces real values if E/M > 9, which has two roots
with ranges 1 < ν 6 2 and 26 ν < ∞; however, this
solution is discarded because it falls beyond the bounds
of equation (4);

2. equation T14: 0 < E/I 6 9
8 ; the two roots have the

ranges −1 < ν 6−
1
4 and −

1
4 6 ν < 1

2 ;
3. equation T15: 0 < H/M 6 9

8 ; the two roots have the
ranges −1 < ν 6 1

5 or 1
5 6 ν < 1

2 .

There are companion relations for G and B, and these
quadratic equations have interconnected roots. For example,
the counterpart to equation (T15) for the bulk modulus is

B =
M

6

[
3 ±

(
9 − 8

H

M

) 1
2

]
(11)

and, having the same argument for the square root as in
equation (T15), restricts 0 < H/M 6 9

8 for this expression
to be real. The negative root has the range 0 < B/M 6 1

2 ,
1
2 6 B/M < 1 for the positive root. It can be shown that the
positive root is linked to the positive root of equation (T15)
and vice versa; that is, if 1

2 6 B/M < 1, then 1
5 6 ν < 1

2 .
Quadratic expressions with two possible solutions for G,

B and ν are at odds with the behavior of real materials, which
have unique elastic constants for any thermodynamic state.
Therefore, only one set of solutions can be valid.

3. Limits on ν for arbitrary deformations

The considered elastic constants—shear G, hydrostatic
pressure or dilatation B, uniaxial stress E, uniaxial strain
M, biaxial stress H and biaxial strain I—permute a single
stress or strain through the available loading combinations
for an isotropic material. However, the possibility exists that
more restrictive limits on ν can be found from other elastic
constants derived from more complex combinations of stress
or strain. To examine this, we introduce two, continuously
variable elastic constants. The first is a biaxial stress with
σ11 6= 0 and σ22 = yσ11, where y is a constant describing the
fraction of biaxial stress, 06 y 6 1; all other σi j = 0. The
elastic constant for this variable stress geometry is

Hy =
E

1 − yν
. (12)

When y = 0 (uniaxial loading), H0 = E ; when y = 1 (biaxial
stress), equation (12) becomes equation (T8).

For the second constant, consider a variable biaxial
strain ε11 6= 0 and ε22 = βε11, where β is the fraction of
biaxial strain, 06 β 6 1; and all other strains = 0. The elastic
constant for this variable strain geometry is

Iβ =
1 − ν(1 − β)

1 − ν
M. (13)

Similarly, when β = 0 (longitudinal deformation), I0 = M ,
and when β = 1, equation (13) becomes equation (T9),
corresponding to biaxial strain. These expressions define the
elastic stiffness for any mixture of one- or two-dimensional
stress or strain.

From the equations in table 1, many other relations that
involve Hy and Iβ can be derived. Of particular interest is

ν =
Iβ

4Iβ + 2y(1 − β)Hy

(1 − β + y)
Hy

Iβ
− 1 ±

[
9 − (10

−2β − 2y + 4βy)
Hy

Iβ
+ (1 − β − y)2

H 2
y

I 2
β

] 1
2

 . (14)

This equation combines the four quadratic expressions
for Poisson’s ratio into a single, continuous function.
Equation (14) does not imply that biaxial stress and biaxial
strain conditions coexist; clearly they cannot. Rather, a
material can be subjected to biaxial stress, and ν determined.
In a separate experiment, the material can be subjected to
biaxial strain, and ν determined. These two determinations of

4
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ν have to be internally consistent, but if ν < 0.2 is allowed,
contradictions arise.

Each of the four quadratic expressions for ν, (T12)–(T15)
in table 1, can be recovered by substituting the respective
values for y and β into equation (14). Intermediate values y
and β produce curves that lie between these extremes. Shown
in figure 2 is the curve for y =

1
2 and β = 0, which falls

between the H/M and E/M curves. Likewise, the two roots of
equation (14) meet without discontinuity. This common point
is defined as ν∗(y, β) at H∗

y /I ∗

β , which divides Poisson’s ratio

into the ranges −1 < ν 6 ν∗ and ν∗ 6 ν < 1
2 . Since the upper

span corresponds to experimental data [30, 31], it is of interest
to determine the lower limit ν∗. This point is found when the
two roots are equal, which occurs when

9 − (10 − 2β − 2y + 4βy)
H∗

y

I ∗

β

+ (1 − β − y)2

(
H∗

y

I ∗

β

)2

= 0.

(15)
This expression has the solutions

H∗
y

I ∗

β

=
5 − y − β + 2βy ± 2 [(β2

− β − 2)(y2
− y − 2)]

1
2

(1 − β − y)2
.

(16)

The positive root is rejected because it returns
H∗

y /I ∗

β > 9, producing ν > 1, which is beyond the bounds
from equation (4). Note this corresponds to E/M > 9, which
was also discarded in section 2 above.

The values of ν∗ satisfying equation (16) for given y
and β have the range −

1
4 < ν∗ 6 1

5 , with ν∗
= 0 for y =β.

In terms of the common elastic constants, (i) ν∗
= 1 at β =0,

y = 0, corresponding to ν∗(E, M); (ii) ν∗
=

1
5 at β = 0,

y = 1, corresponding to ν∗(H, M); (iii) ν∗
= −

1
4 at β = 1,

y = 0, corresponding to ν∗(E, I ); and (iv) ν∗
= 0 at

β = 1, y = 1, corresponding to ν∗(H, I ). Thus, equation (15)
merges the ranges of ν for specific conditions of stress
and strain (figure 1) into a single continuous function
describing arbitrary stress and strain. Fractional values of y
and β in equation (13) determine ν∗ for any combination of
two-dimensional stress or strain. Again, the most restrictive
range is the correct range, because it accommodates the
other ranges, and the lower bound for Lamé’s theory to be
applicable is 1

5 for any stress and strain.
Note that equation (16) is undefined when β + y = 1. For

this condition, the solution for H∗
y /I ∗

β is found by substituting
a − y = β and taking the limit a → 1 by twice applying
L’Hôpital’s rule. The result is

H∗
y

I ∗

β

= 1 −
(1 − 2y)2

4(y2 − y − 2)
. (17)

This demonstrates that there is no discontinuity when β+y=1.
The companion quadratic relations for G and B are

G =
Iβ

4 − 8β

3 + (1 − β + y)
Hy

Iβ
∓

[
9 − (10

−2β − 2y + 4βy)
Hy

Iβ
+ (1 − β − y)2

H 2
y

I 2
β

] 1
2

 , (18)

B =
Iβ

6 + 6β

3 − (1 − β + y)
Hy

Iβ
±

[
9 − (10

−2β − 2y + 4βy)
Hy

Iβ
+ (1 − β − y)2

H 2
y

I 2
β

] 1
2

 . (19)

The inverted ± sign in equation (18) denotes that its negative
root is linked to the positive roots of equation (14) and (19).

4. Exceptions

As stated in the introduction, isotropic materials exist
for which ν < 1

5 , although they are rare. Homogenous
materials which show this behavior include pyrite [32],
α-cristobalite [33], diamond [34–36], a TiNb24Zr4Sn7.9

(β-type titanium) alloy [37], boron nitride [38],
α-beryllium [39] and certain silicate glasses [40]. In the
former cases (pyrite, cristobalite, diamond), elastic properties
have been determined from vibrational measurements of
single crystals and aggregate isotropic behavior is inferred.
For the titanium alloy, boron nitride, beryllium and SiO2

glasses, elastic properties of the aggregate were determined
by vibrational methods, in which two elastic constants
are measured, with Poisson’s ratio in turn found from the
expressions in table 1. It can be seen that while homogeneous
solids having ν < 1

5 have been identified, for none have the
Lamé relations been tested.

There are recent reports of auxetic behavior in crystalline
materials that exhibit negative ν in certain directions [41, 42].
However, when the aggregate isotropic behavior is examined,
these substances show the conventional behavior, ν > 1

5 .
There is also a class of open-cell foams that have negative
Poisson’s ratio, due to debuckling of the cell walls [3]. These
auxetic foams exhibit nonlinear mechanical properties [43],
so that the application of linear elasticity is problematic.
Fitting their behavior to more complicated elasticity
models has had limited success [44], although recently
we showed that the equations of Lamé elasticity theory
fail for such materials [45]. Recent investigations of larger
scale, two-dimensional skeletal structures, both experimental
[46, 47] and theoretical [48], also discovered auxetic behavior,
but linear elasticity does not apply to deformations larger
than mathematically infinitesimal, so that the theory cannot
be tested.

5. Summary

The equations of classical elasticity (Lamé’s model) impose
restrictions on the values of Poisson’s ratio, derived from
the requirement that the strain energy be non-negative. Any
pair of elastic constants leads to various expressions for the
bounds on ν, but for mutual consistency, the most restrictive
limits are the correct ones. The result, 1

5 6 ν < 1
2 , is shown

to be the valid range for an isotropic material subjected to
arbitrary loading or deformation. This range comports with
the values of ν for the vast majority of isotropic materials,
even though substances having ν < 1

5 do exist. However, the
classical equations cannot be applied for the latter.

5
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