Comment on “Correlations between isobaric and isochoric fragilities and thermodynamical scaling exponent for glass-forming liquids”

R. Casalini
Chemistry Department, George Mason University, Fairfax, Virginia 22030, USA
and Naval Research Laboratory, Chemistry Division, Code 6120, Washington, D.C. 20375-5342, USA

C. M. Roland
Naval Research Laboratory, Chemistry Division, Code 6120, Washington DC 20375-5342, USA
(Received 31 October 2006; published 18 July 2007)

For nonassociated, glass-forming liquids and polymers, thermodynamic scaling of structural relaxation times and viscosities is an empirical fact, demonstrated by various groups for dozens of materials. The P and T invariance of the isochoric fragility follows directly from this scaling. Apparent inconsistencies with these statements were reported recently by Grzybowski et al. [A. Grzybowski, K. Grzybowska, J. Zioł, and M. Paluch, Phys. Rev. E 74, 041503 (2006)]; however, the putative inconsistencies arise from use at higher pressures of parameters to correlate the isobaric and isochoric fragilities that are valid only for ambient pressure.

DOI: 10.1103/PhysRevE.76.013501
PACS number(s): 64.70.Pf, 77.22.Gm

Recent works [1–4] have shown that α- (structural) relaxation times, τ, conform to a thermodynamic scaling expressed as

$$\tau = \tilde{\tau}(TV\gamma),$$
(1)

where T is temperature, V the specific volume, γ a material constant, and $\tilde{\tau}$ represents an unknown function (for a review, see [5]). A similar result is also found for the viscosity of glass-forming materials [6]. From Eq. (1) and the definitions of the isochoric, $m_V=\left.\partial \log_{10}(\tau)/\partial(Tg/T)|_{Vconst,Tg}$ and isobaric, $m_P=\left.\partial \log_{10}(\tau)/\partial(Tg/T)|_{Pconst,Tg}$ fragilities, it follows that [7]

$$m_V = \left.\frac{\partial \log_{10}(\tau)}{\partial(Tg/T)}\right|_{Vconst,Tg},$$
(2)

where $\Gamma = TV\gamma$ and $\tau(Tg)$ is a constant (typically 100 s), and

$$m_V = \frac{m_P}{1 + \gamma \alpha P Tg},$$
(3)

where αP is the isobaric thermal expansion coefficient at the glass transition temperature Tg. Two straightforward conclusions follow: From Eq. (2), if the scaling [Eq. (1)] is valid, then m_V must be a constant. From Eq. (3), since $\alpha P Tg$ decreases with P [as is true for normal liquids, but not necessarily for strongly H-bonded materials (e.g., water)], then m_P decreases with P.

In a previous publication [8], we showed that for nonassociated liquids and polymers a correlation exists between the isobaric fragility at atmospheric pressure m_{P0} and the isochoric fragility, which can be described by a linear equation

$$m_{P0} = a + b m_V,$$
(4)

with a and b constants. Although the two fragilities strongly correlate, we pointed out “Of course, this is only a general pattern, rather than a strict relationship” [8]. Nevertheless, Eq. (4) has a number of important consequences. First, materials with large isobaric fragilities, measured for the usual condition of atmospheric pressure, have dynamics dominated more by T than by V. Second, any correlation of other properties with m_{P0} translates directly into a correlation with m_V. Third, there exists an inverse correlation, described as “approximately linear behavior” [8], between the scaling parameter γ and m_V. The latter result follows from Eqs. (3) and (4) to the extent that $\alpha P Tg$ does not vary much among different materials; such constancy is known as the empirical Boyer-Bondi rule [9], but it is only approximately valid [10]. We have shown for propylene carbonate and decalcohol-disequino-line, which have large m_V, some departure from a linear of correlation of γ and $1/m_V$ [11].

In a recent paper, Grzybowski et al. [12] suggested that the two correlations presented in Ref. [8] are not entirely correct, thus calling into question the validity of the thermodynamic scaling of α-relaxation times [Eq. (1)]. The purpose of this paper is to clarify any confusion arising from these statements.

Grzybowski et al. [12] state: “The correlation [Eq. (4)] should be valid with the same parameters at any pressure.” But since m_V is a constant and m_P varies with pressure [5,13], the correlation [Eq. (4)] must change with pressure. Specifically, for nonassociated liquids and polymers, since m_P decreases with P, either the parameter a or b must decrease with P. Therefore the hypothesis that a and b are independent of pressure cannot be reconciled with Eq. (1).

This hypothesis led Grzybowski et al. to two potentially misleading conclusions [12]: “The isochoric fragilities obtained from the correlation (i) [Eq. (4)] at ambient and elevated pressures are different.” As pointed out above, the isochoric fragility of nonassociated liquids does not change with pressure [7]. And “γ^{corr} calculated from the correlation (ii) at pressures of 0.1 MPa and 0.6 GPa differ,” but the parameter γ is a pressure-independent material constant (otherwise the thermodynamic scaling has no meaning) [1–6].
These problems arise in Ref. [12] from applying Eq. (4) to high pressure data using values of the parameters a and b reported in Ref. [8] for atmospheric pressure.

Grzybowski et al. [12] state: “it is worth noticing that correlation (ii) should not be applied for H-bonded systems.” This deviation was illustrated in Fig. 3 of Ref. [8] with data for glycerol and sorbitol. More generally, Eq. (1) fails for H-bonded materials, as was shown for water and oligomeric polypropylene glycol [6], in turn invalidating Eqs. (3) and (4).

Finally, statements in Ref. [12] might be misconstrued as indicating that the quantity $\Gamma = T^{-1}V^{-\gamma}$ could be independent of pressure; however, such constancy is thermodynamically untenable.

We hope that this Comment to the paper of Grzybowski et al. helps to elucidate the origin of the apparent inconsistencies presented therein.

This work was supported by the Office of Naval Research.