Contents

1 Introduction
 1.1 Viscoelasticity and high elasticity in polymers
 1.2 Modes of motion
 1.3 Fluctuations and linear response theory
 References

2 Cooperative local dynamics – the glass-transition zone
 2.1 Non-exponential and non-Arrhenius behavior
 2.2 Temperature and density effects on τ_a
 2.3 Dispersion of relaxation times and dynamic heterogeneity
 2.4 Johari-Goldstein secondary relaxation
 2.5 Decoupling phenomena
 2.6 Applications
 References

3 Chain dynamics
 3.1 Unentangled polymers
 3.2 Entangled polymers
 3.3 Practical aspects of diffusion
 References

4 Networks
 4.1 Phenomenological elasticity models
 4.2 Chain models
 4.3 Constraint models
 4.4 Role of molecular motions in the elastic response
 4.5 Alternative network structures
 References

5 Constitutive modeling, non-linear behavior, and the stress-optic law
 5.1 Linearity and the superposition principle
 5.2 Internal stress and optical birefringence
 5.3 Reversing strain histories
 5.4 Empirical rules for non-linear flow
 5.5 Payne effect
 References

6 Reduced variables and characteristic relaxation times
 6.1 Time-temperature superpositioning
 6.2 Thermorheological complexity
6.3 Density scaling of the dynamics
6.4 Characteristic relaxation times
References

7 Blends
7.1 Dynamic properties of miscible polymer blends
7.2 Relaxation models for miscible blends
7.3 Phase-separated blends
References

8 Liquid-crystalline materials
8.1 Liquid crystals
8.2 Liquid crystal elastomers
References

9 Bioelastomers
9.1 Proteins
9.2 Bioelastomers
References

10 Confinement effects on polymer dynamics
10.1 Spatial confinement
10.2 Filler effects
References

Index
Symbols