Viscoelastic Behavior of Rubbery Materials

C.M. Roland

Polymer Physics Section Naval Research Laboratory Washington, DC

UNIVERSITY PRESS

ISBN 978-0-19-957157-4 1 3 5 7 9 10 8 6 4 2

Contents

1	Introduction	on
	1.1	Viscoelasticity and high elasticity in polymers
	1.2	Modes of motion
	1.3	Fluctuations and linear response theory
	Referer	nces
2	Cooperative local dynamics – the glass-transition zone	
	2.1	Non-exponential and non-Arrhenius behavior
	2.2	Temperature and density effects on $ au_lpha$
	2.3	Dispersion of relaxation times and dynamic heterogeneity
	2.4	Johari-Goldstein secondary relaxation
	2.5	Decoupling phenomena
	2.6	Applications
	Referer	nces
3	Chain dynamics	
	3.1	Unentangled polymers
	3.2	Entangled polymers
	3.3	Practical aspects of diffusion
	Referer	nces
4	Networks	
	4.1	Phenomenological elasticity models
	4.2	Chain models
	4.3	Constraint models
	4.4	Role of molecular motions in the elastic response
	4.5	Alternative network structures
	Referer	nces
5	Constitutive modeling, non-linear behavior, and the stress-optic law	
	5.1	Linearity and the superposition principle
	5.2	Internal stress and optical birefringence
	5.3	Reversing strain histories
	5.4	Empirical rules for non-linear flow
	5.5	Payne effect
	Referer	nces
6	Reduced variables and characteristic relaxation times	
	6.1	Time-temperature superpositioning

Thermorheological complexity

6.2

- 6.3 Density scaling of the dynamics
- 6.4 Characteristic relaxation times

References

7 Blends

- 7.1 Dynamic properties of miscible polymer blends
- 7.2 Relaxation models for miscible blends
- 7.3 Phase-separated blends

References

8 Liquid-crystalline materials

- 8.1 Liquid crystals
- 8.2 Liquid crystal elastomers

References

9 Bioelastomers

- 9.1 Proteins
- 9.2 Bioelastomers

References

10 Confinement effects on polymer dynamics

- 10.1 Spatial confinement
- 10.2 Filler effects

References

Index

Symbols