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Introduction
It is well-known that rubbers and glasses usually

exhibit proportionality between the true stress, σ, and
the optical birefringence, ∆n:1

where C is the stress optical coefficient. However, in
the softening zone of the viscoelastic spectrum, devia-
tions are observed from the stress optical law, with all
quantities now complex and having different frequency
dependencies:

where ω is the angular frequency. For analysis of data
obtained in typical dynamic experiments, it is useful to
divide eq 2 by the strain, ε, to yield

where E*(ω) is the dynamic modulus and the strain-
optical coefficient is defined as O*(ω) ) ∆n*(ω)/ε.

In analyzing birefringence data in the softening zone,
Read 2 assumed that the measured stress was just the
sum of independent contributions from glassy and
rubbery components:

and

The birefringence is then given by 2

where CG and CR are the respective stress optical
coefficients for the putative glassy and rubbery compo-
nents. The complex strain optical coefficient can then
be expressed as

From behavior in the terminal zone, Read identified the
rubbery stress optical coefficient in terms of the storage
and loss functions:2

while the glassy coefficient was assumed to be related
only to the in-phase components:

Equations 5-9 were applied to dynamic birefringence
data from four different polymers, yielding the frequency-
dependent contributions of the two components.2 Read
actually referred to the glassy component as the dis-
tortional mode, involving small torsional motions of the
chain. This mode can be identified with the local
segmental dynamics.3 The rubbery component com-
prises orientational motions associated with longer
length scales (i.e., the chain modes described by the
Rouse model).

In a variation on this approach, Osaki and co-workers
adopted the definition4,5

based on the fact that in the glassy zone O*(ω)/E*(ω) ≈
O′′(ω)/E′′(ω) . O′(ω)/E′(ω). Equations 5-8 and 10 have
been applied to the interpretation of viscoelastic and
birefringence data from more than a dozen polymers.6
More recently, to account for results from polyisobutyl-
ene and poly(2-vinylnaphthalene), the method was
extended to include a third component for the stress:7,8

The last term, ostensibly accounting for “fluctuations”
in the local stress, was necessary to obtain agreement
with the modulus determined experimentally at high
frequencies for these polymers. However, this stress
does not contribute to the dynamic birefringence (i.e.,
CF ) 0), whereby eq 6 is still employed for the strain
optical coefficient. It is worth noting that polyisobutyl-
ene’s viscoelastic behavior is, in general, somewhat
unique.9,10

It is important to recognize that the approach of Read
and Osaki is not corroborated by successful application
of eqs 5-11 to experimental data. The only quantities
not experimentally determined are the (hypothetical)
components of the modulus, which from eqs 5 and 7 are
given by

and

In fact, experimental results can be described through
the use of either eqs 9 or 10, albeit with different values
obtained for the glassy and rubbery contributions to the
total stress. We examine implications of such an
analysis in the next section.

Results and Analysis
Polyisoprene. Displayed in Figure 1 are the dy-

namic modulus and birefringence master curves for
polyisoprene (PI).11 Analysis of these data using eqs
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5-8 and 10 gives CG ) -0.011 and CR ) 2.0 GPa-1, as
reported by Osaki et al.11 From these results, eqs 12
and 13 yield the frequency-dependent contributions of
the glassy and rubbery components to the modulus,
whose ratio is denoted by a solid line in Figure 2. The
rubber predominates at the lowest frequencies, while
the glass governs the behavior at high frequencies.
More interesting is the relative contributions in the
softening zone (ca. -1 < log ω (rad/s) < 3). Figure 2
implies that the glassy component makes a significant
contribution to the response, indeed the dominant one,
virtually throughout this region of the spectrum. The
question is whether such a result is congruent with
other experimental facts. For example, the loss com-
ponent of the dynamic birefringence in Figure 1 changes
sign at a frequency of about 50 Hz. One might antici-
pate that such a sign reversal is occasioned by some
change in the deformation mechanism. However, ac-
cording to Figure 2 the glassy component continues to
dominate the response through frequencies associated
with the change in sign of O′′(ω).

From the creep recovery of low-molecular-weight
polymers near Tg, Plazek et al.3,12-14 determined that
the contribution from local segmental motion has es-
sentially vanished by the time the compliance reaches
a level ca. 4 times its glassy value (DG ≈ 0.3 GPa-1).
Using the data in Figure 1, we determine that the
storage compliance (D′ ) E′/(E′2 + E′′2) increases by this
factor of 4 at log ω ) 1.26 (indicated by the large-dashed
vertical line in Figures 1 and 2). Contrarily, the
analysis of Osaki et al.11 suggests the behavior at this
frequency is still governed primarily by the glassy
component (Figure 2).

The dielectric spectrum of a high-molecular-weight
()5.0 × 106) PI was recently measured15 at the same
temperature (-52 °C) as the reference temperature of
Figure 1. In Figure 3 we show the dispersion in the
dielectric loss due to local segmental motion. Since PI
has a dipole moment parallel to the chain, motion of
the chain end-to-end vector gives rise to a “normal”
mode, analogous to the terminal mechanical relax-

Figure 1. Experimental time-temperature master curves
reported by Osaki et al. 11 for the modulus (solid symbols) and
the strain optical coefficient (hollow symbols) of polyisoprene.
Note the change in sign of O′′(ω) at log ω ) 2.5. The solid lines
through the data were calculated using eqs 18-20. The larger
vertical dashes indicate the frequency at which the compliance
attains a value 4 times larger than the high-frequency limiting
compliance (≈0.3 GPa-1). The smaller vertical dashes repre-
sent the position in the spectrum at which the contribution of
local segmental motion to the mechanical response becomes
negligible, as inferred from dielectric spectroscopy.

Figure 2. The relative contributions from the glassy and
rubbery components to the data in Figure 1, as reflected by
the ratio of the magnitudes of their respective complex moduli.
The solid line was calculated assuming additivity of the
stresses with CG ) -0.011 and CR ) 2.0, while the dotted-
dashed line assumes additivity of the strains with CG ) -0.06
and CR ) 0.02 (units of GPa-1). The oscillations in the former
(latter) at lower (higher) frequency reflect noise in the E* and
O* data. The vertical lines are as defined in Figure 1.

Figure 3. The dielectric loss of high-molecular-weight PI
measured15 at the reference temperature of Figure 1. The inset
compares the frequency of the maximum in the dielectric loss
(dashed line) to the maximum in the loss modulus (solid line).
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ation.16,17 However, the molecular weight of the PI is
sufficiently high that the normal mode peak, located at
ω ≈ 10-7 rad/s,15 does not overlap with the segmental
peak. This resolution of the modes means that the
segmental dispersion decays almost to zero at about 2.8
decades toward lower frequency from the peak maxi-
mum. This identifies the frequency, ω ) 0.1 rad/s, in
Figure 3 at which the contribution from the local
segmental dynamics becomes negligible.

As seen in the inset to Figure 3, the segmental
relaxation peak measured mechanically occurs at a
frequency almost 6 times faster than the dielectric
dispersion. From the decay of the isolated dielectric
dispersion (Figure 3), we can estimate the frequency at
which the local segmental modes no longer contribute
to the mechanical spectrum. This frequency, ω ) 0.6
rad/s, is denoted by a short-dashed vertical line in
Figures 1 and 2. However, as shown in Figure 2, the
analysis of Osaki et al.11 implies a substantial glassy
contribution, comparable in magnitude to the rubbery
component, persisting at this low frequency. Thus, the
results of Osaki et al. concerning the dynamics of the
glassy mode appears to be at odds with two independent
assessments of the time-scale for local segmental re-
laxation. In the next section we investigate an obvious
cause of this discrepancy.

Strain Additivity. The method of Osaki and co-
workers is based on the idea that scalar stresses
(moduli) are additive (eqs 4-6). The virial stress
formulation, whereby vector forces are summed to yield
the system stress, is often used in molecular dynamic
simulations of polymers,18 and it has been taken as
justification for eq 5.7,8 However, simulations can be
analyzed using alternative conservation laws, for ex-
ample, summation of the local strains.19-21

Creep/recovery experiments on a polymer melt enable
the assumption underlying eq 4 to be assessed directly.
The linear creep compliance, D(t), is given by the sum
of the recoverable compliance, Drec(t) and the viscous
deformation22-24

where t and η are time and viscosity, respectively. This
means that recoverable and viscous stresses are not
independent, but are governed by the corresponding
elastic and viscous strains. The validity of eq 14 is
confirmed from measurement of the recovery after
constant stress creep.25 The remaining (permanent)
deformation of a polymeric melt equals t/η times the
stress. Thus, creep/recovery experiments indicate that,
at least for terminal flow, deformation processes are
additive in strain, rather than in stress. We now modify
the analysis of Read2 and Osaki4,5 in consideration of
this idea.

The corollary to eq 4 for the assumption that the total
strain is the sum of independent glassy and rubbery
components is

Brewster’s law can be expressed as

From eq 15, the total compliance D*(ω), ()1/E*(ω)), is
given by

and Brewster’s law becomes

The assumption of strain additivity then yields for the
respective glassy and rubbery components

and

Using eqs 18-20, the data in Figure 1 can be repro-
duced. However, as pointed out above in reference to
the analyses of Osaki and co-workers,4,5,11 this is a given,
and not a test of the method. The components of the
stress optical coefficient, CG and CR, are no longer
defined by eqs 8-10; in fact, they have no a priori
values, other than the requirement of yielding agree-
ment with the experimental data of Figure 1.

To demonstrate this, the master curves in Figure 1
were fitted using CG ) -0.06 and CR ) 0.02 GPa-1

(shown by the solid lines through the data points).
Using eqs 19 and 20 we then obtain the relative
contributions of the glassy and rubbery components,
which are denoted by the dotted-dashed line in Figure
2. The glassy contribution is now found to be signifi-
cantly less than that from the rubber through most of
the transition zone. In fact, the strain optical coef-
ficient, O′′(ω), changes sign at a frequency in Figure 1
at which the rubber begins to replace the glassy
component as the dominant contributor to the overall
response.

We also note that for both measures of the position
in the spectrum at which the glassy component’s
contribution becomes negligiblesD(t) attaining a value
4 times higher than the glassy compliance3,12-14 (large-
dashed line in Figure 2) and decay of the local segmental
relaxation function to zero15 (short-dashed line in Figure
2)seqs 15-20 indicate dominance of the rubbery com-
ponent. Thus, the assumption of strain additivity
enables the experimental data to be accurately repro-
duced and the deduced contributions of the glassy and
rubber components are consistent with alternative
methods of assessing their relative significance.

Summary
The interplay of forces in a dynamically correlated

system such as polymer melts may be too complicated
for any simple analysis to be correct. Nevertheless, such
efforts can potentially yield useful insights. The work
described herein is not meant to suggest that an
interpretation based on the summation of strains is
necessarily valid. However, this approach leads to
results consistent with four experimental facts:

(i) The elastic and viscous deformations in the termi-
nal zone are additive in the strain.22-25

(ii) There is a change in sign of the imaginary part of
the strain optical coefficient in the high-frequency end
of the transition zone.11
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(iii) As determined by creep experiments, the decay
of the glassy compliance occurs toward higher frequen-
cies in the transition zone.3,12-14

(iv) As determined by dielectric spectroscopy, the local
segmental relaxation decays to zero near the middle of
the transition zone.15

These results should prompt reexamination of the
assumption of stress additivity and any inferences
derived from it.
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