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In a recent paper in this journal,1 Rubinstein and
Panyukov (R&P) proposed a rubber elasticity model,
based on the idea that nonlinear elasticity arises from
nonaffine displacement of the “tube” of entanglements
confining network chains. They obtained the engineer-
ing stress, f, for a uniaxially deformed network as the
sum of a phantom and an entangled network contribu-
tion

in which λ is the stretch ratio, and the quantity f/(λ -
λ-2) is the familiar “reduced stress”. Gc, the modulus
of the phantom network, accounts for the effect of the
chemical cross-links, while Ge represents the elastic
modulus due to topological interactions. Ge essentially
equals the plateau modulus of the corresponding poly-
mer melt.1
As pointed out by the authors, eq 1 has a similar form

to the Mooney-Rivlin equation2

derived by attempting to capture the relevant physics
through restrictions on the form of the strain energy
function. This phenomenological approach has enjoyed
renewed popularity of late.3-5 For λ > 1, eqs 1 and 2
behave similarly over moderate extensions. However,
the two functions depart for compression, with the R&P
model offering some improvement on a principal failing
of the Mooney-Rivlin relation, its overestimation of
compressive stresses.2 The parameters of the two
models are related as1

so that C1 not only represents the chemical network but
also includes topological contributions.6,7 To the extent
Ge can be identified with the plateau modulus of the
uncured polymer, eq 3 also indicates that C2 will be
independent of cross-link density. While the Mooney-
Rivlin plots in Fig. 3 of ref 1 are indeed parallel, more
generally, experimental studies have found that C2
varies with cross-linking.7-12

Recognition of the importance of intermolecular in-
teractions in governing chain fluctuations, and hence
the elastic energy, originated with Flory’s constraint
theory of rubber elasticity.13,14 This model, which
addressed how entanglements modify the stress in a
strain-dependent manner, has recently been generalized
in the continuously constrained chain (CC) model.15,16
The constraint theories yield expressions in the form

where h(λ) is a complicated function of strain describing
the severity of the entanglement constraints. Proper
assessment of elasticity theories requires comparison
to measurements encompassing a range of experimental
variables, including different deformation types. Re-
cently, mechanical and optical birefringence data were
obtained for cross-linked polyisoprenes deformed in both
tension and compression.17 The constraint theories of
elasticity were found to accommodate the stress and
birefringence data in tension; however, discrepancies
were apparent when both compression and tension data
were analyzed together. In fact, the differences between
the various constraint models were less than their
deviation from experiment. These models overestimate
the compressive stress, although the error is not as
severe as for the Mooney-Rivlin relation.
In ref 1, it was stated that the R&P model “leads to

a stress-strain relation that is in excellent agreement
with experiments.” However, the model was only
compared therein to uniaxial extension data. This is
insufficient to demonstrate that eq 1 is a valid constitu-
tive equation. In Figure 1, mechanical equilibrium data
are displayed for polyisoprene networks in both uniaxial
extension and compression (taken from ref 17). The
solid lines in the figure correspond to the R&P model.
Since the model could not describe the experimental
data over the entire range of strains, eq 1 was fitted to
the results for extension, using a least-squares-fit
constrained so that Ge is the same for both networks.
Hence, the curves depart from the compression results,
although the discrepancy for λ < 1 is less than for the
Mooney-Rivlin equation, which would yield a straight
line for all λ in Figure 1. The topological parameter,
Ge ) 0.19 kPa, is somewhat smaller than the plateau
modulus of polyisoprene, 0.36 ( 0.04 kPa.18,19 For
comparison, we also show (dashed lines) the fit of the
CC model to the same data.17 There are only modest
differences between the R&P and CC models.

Figure 1. Reduced force vs reciprocal of the stretch ratio for
two deproteinized natural rubber networks,17 along with the
least-squares-fits of eq 1 to the extension data (ignoring the
upturn in the experimental data for the more cross-linked
network, reflecting strain-induced crystallization). The fitting
parameters were Ge ) 270 kPa, and Gc ) 105 and 187 kPa for
the lower and upper curves, respectively. The R-P expression
was not capable of describing both tension and compression
results. Also shown is the fit of the constrained chain theory.15,16

f/(λ - λ-2) Gc + Ge/(λ - λ1/2 + 1) (1)

f/(λ - λ-2) ) 2C1 + 2C2/λ (2)

2C1 ) Gc + 1/2Ge; 2C2 ) 1/2Ge (3)

f/(λ - λ-2) ) Gc(1 + h(λ)) (4)
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The experimental data in Figure 1 are noisy, in part
due to the nature of the experiments necessary to obtain
extension and compression measurements on the same
sample but also because of the scatter intrinsic to the
ordinate for λ ∼ 1 (some of this may actually be real20).
The data appear very smooth in a plot of the stress vs
the strain. To ensure that the discrepancies between
the R&P model and experiment seen in Figure 1 are
not artifacts of dubious data, we made the same
comparison using another set of published results.21
These differ from that in ref 17, in that compression was
achieved in the former via inflation (biaxial extension).
As seen in Figure 2, the scatter around λ equal to unity
remains. More relevant herein, the deviation of eq 1
from experimental results for λ < 1 remains.

In conclusion, the R&P model offers some insights
regarding the origin of the elastic behavior of networks.
Unfortunately, in accounting for experimental data, the
model exhibits shortcomings similar to those of existing
elasticity models.
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Figure 2. Reduced force vs inverse stretch ratio for sulfur
cross-linked natural rubber, taken from ref 21. The solid line
is the best-fit of eq 1 to the extension data, which yields Ge )
88 and Gc ) 81 kPa.
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