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ABSTRACT: For type-A polymer chains having type-A dipoles parallel along the chain
backbone (such as cis-polyisoprene), a theoretical analysis was conducted for the
rheodielectric response to relate this response to the chain dynamics. The rheodielec-
tric response in the shear gradient direction (y direction) under steady shear was an-
alyzed on the basis of a Langevin equation. It turned out that the relaxation time is
exactly the same for the rheodielectric relaxation function and the end-to-end vector
autocorrelation function defined in the shear gradient direction and that the relaxa-
tion mode distribution also coincides for these functions at least up to second order of
the shear rate (corresponding to the lowest order of nonlinearities of these functions).
Consequently, the Green-Kubo theorem holds satisfactorily, and the rheodielectric in-
tensity is proportional to the squared chain size in y direction, hR2

yi, averaged over
the time-independent conformational distribution function under steady shear. The
situation is more complicated under large amplitude oscillatory strain (LAOS)
because the conformational distribution function fLAOS is synchronized with LAOS to
oscillate at the LAOS frequency, X. The rheodielectric response under LAOS was
found to detect this oscillation of fLAOS being coupled with the oscillation of the elec-
tric field, E(t) ¼ E0sin xt, and thus, split into a series of components oscillating at
frequencies x and x � bX (b ¼ 1, 2, …). Consequently, the rheodielectric intensity
under LAOS, evaluated from the component oscillating at x, is no longer propor-
tional to hR2

yi. However, the relative mode distribution and relaxation time of this
component can be directly related to those of the end-to-end vector correlation aver-
aged over a nonoscillatory part of fLAOS. VVC 2009 Wiley Periodicals, Inc. J Polym Sci Part B:

Polym Phys 47: 1039–1057, 2009
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INTRODUCTION

Dynamics in soft materials has been experimen-
tally investigated with a variety of spectroscopies

such as the viscoelastic, NMR, and dielectric
methods. The same microscopic dynamics is dif-
ferently reflected/averaged in different proper-
ties.1,2 For example, for so-called type-A polymers
having the electric dipoles parallel along the
chain backbone, the linear viscoelastic and dielec-
tric properties in long time scales reflect the iso-
chronal orientational anisotropy and orientational
memory of the chain, respectively.1,2 These
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properties are commonly governed by the global-
chain dynamics, but their details (such as the
relaxation mode distribution) are not identical to
each other because of the difference between the
isochronal anisotropy and the memory, the latter
detecting the orientational correlation at two
separate times (e.g., 0 and t).1

Thus, details of the dynamics are better under-
stood if we measure different properties of a given
material simultaneously. The well-known exam-
ple of this simultaneous measurement is the rheo-
optical measurement,1,2 which often enables the
molecular assignment of a specific relaxation pro-
cess. The other example is the rheodielectric mea-
surement in which the dielectric response of a ma-
terial under flow/deformation is detected together
with the mechanical response.

Rheodielectric studies have been conducted for
a variety of materials3–12 that include low molecu-
lar weight liquid crystalline (LC),4(a,b),5,12 carbon
black (CB) suspensions,6 polyelectrolytes (poly-
mer/salt composites),9 and entangled polymer
melts/solutions.3,5,7,8,10–12 In heterogeneous mate-
rials, higher order structures tend to be distorted/
disrupted even by slow flow that does not affect
the dielectrically active molecular motion itself.
For this case, the rheodielectric change just
detects the structural changes (affecting the direc-
tion of molecular motion/current conduction) such
as the orientation of LC textures4(a,b) and scission
of CB network.6 In contrast, the rheodielectric
effect for homogeneous systems usually detects
changes of the molecular motion due to flow/defor-
mation. This effect needs to be analyzed on the
basis of a theoretical expression of the dielectric
relaxation function U(t) that relates the rheodi-
electric response to the molecular dynamics. In
this paper, we focus on this expression for homo-
geneous systems of a representative type-A poly-
mer having rather small type-A dipoles, cis-1,4-
polyisoprene (PI).

For PI at equilibrium, the Green-Kubo theo-
rem13–15 unequivocally leads to the Cole expres-
sion13 in which U(t) is given as the autocorrelation
of the end-to-end dipole averaged over the equilib-
rium distribution function of the chain conforma-
tion. Previous work3,7 considered that U(t) of PI
under steady shear is similarly expressed as the
autocorrelation averaged over the time-independ-
ent distribution function under shear given that
local equilibrium is achieved, but this expression
was not rigorously proved. Under large amplitude
oscillatory shear (LAOS), the same expression has
been utilized11,12 without any justification.

This paper attempts to theoretically analyze the
rheodielectric response of PI under steady shear
and LAOS and relate the response to the confor-
mational dynamics of the PI chains. For this pur-
pose, we consider only the fluctuation of perma-
nent type-A dipoles. (The instantaneous responses
reflecting the atomic/electronic polarization as
well as the local segmental motion can be simply
added to the resulting dielectric function.) For con-
venience of this analysis, we first revisit the
known derivation of the Cole expression for U(t) at
equilibrium.13 Then, we examine if the same
expression is valid under steady shear flow and
LAOS. Readers familiar with the Cole expression
can skip the first part of the next section.

RESULTS AND DISCUSSION

Dielectric Signal at Equilibrium (Cole Expression)13

We consider an equilibrium system of type-A
chains (e.g., PI) that have just a small type-A
dipole moment, ~l per unit length of the chain
backbone, and exhibit negligibly small dipole–
dipole interaction (~l2 � kBTwith kB ¼ Boltzmann
constant and T ¼ absolute temperature). We apply
a weak, time (t) dependent electric field E(t) in y
direction and detect the macroscopic polarization
P(t) in the same direction. The end-to-end dipole of
the jth chain in this direction is given by ~lRy,j with
Ry,j being the y component of the end-to-end vector
of this chain. P(t) of our interest is given by a sum
of these dipoles being averaged over a conforma-
tional distribution function f(p, q, t) in the pres-
ence of the electric field, where f is defined in the
phase space specified by generalized momentum p
and coordinate q. As explained in Appendix A, we
can express the time evolution of f(p, q, t) in terms
of the time-independent equilibrium distribution
function fo(p, q) (in the absence of the electric
field) and the Hamiltonian of the system to find an
explicit expression of P(t),

PðtÞ ¼ ~l2

kBT

Z t
�1

dsEðsÞ
Z

dpdqfRjRy;jðtÞg

� d

ds
RjRy;jðsÞ
� �

f oðp;qÞ

¼ m~l2

kBT

Z t
�1

dsEðsÞ RyðtÞdRy sð Þ
ds

� �
eq

(1)

where m denotes the chain number density and
h…ieq : $dp dq … fo(p, q). Since the system is
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stationary at equilibrium, that is, hA(t)B(s)ieq ¼
hA(t � s)B(0)ieq and hA(t){dB(s)/ds}ieq ¼ �@hA(t � s)
B(0)ieq/@t for any microscopic quantities A and B,
eq 1 reduces to

PðtÞ ¼ � m~l2

kBT
R2

y

D E
eq

Z t
�1

dsEðsÞ @U t� sð Þ
@t

with UðtÞ ¼
Ry tð ÞRy 0ð Þ� �

eq

R2
y

D E
eq

(2)

U(t) is the normalized dielectric relaxation func-
tion (U(0) ¼ 1) that detects the autocorrelation of
the end-to-end vector of the PI chains at equilib-
rium.

The dynamic dielectric constant (or dielectric
permittivity) e0(x) and dielectric loss e00(x) under
the small oscillatory electric field, E(t) ¼ E0sin xt,
are related to U(t) as

e0ðxÞ ¼ e0ð1Þ � De
Z1
0

dt0 cos xt0
dU t0ð Þ
dt0

(3a)

e00ðxÞ ¼ �De
Z1
0

dt0 sin xt0
dU t0ð Þ
dt0

(3b)

with

De ¼ F
4p~l2

kBT

� �
m R2

y

D E
eq

ðfor PIÞ (4)

In eq 3a, we have introduced the high-frequency
dielectric constant reflecting the atomic/electronic
polarization and the local segmental motion,
e0(1), not considered in derivation of eq 1. In addi-
tion, in eq 4, we have introduced a correction fac-
tor for the internal electric field F (%1 for the
global relaxation of PI16) as well as the prefactor
of 4p (in MKSA units).

Dielectric Signal from PI under Steady Shear

The macroscopic polarization P(t) of type-A chains
under steady shear can be expressed in terms of
the end-to-end dipoles ~lRy,j and the conforma-
tional distribution function f(p, q, t) in the pres-
ence of the electric field, as similar to the situation
at equilibrium. However, the time evolution of
f(p, q, t) under steady shear is affected by advec-
tion15,17 and we cannot rigorously derive the
expression of P(t) in a way explained in Appendix

A. In fact, the nonequilibrium statistical analysis
by Evans et al.17–19 suggests that the Green-Kubo
theorem, showing the coincidence of the macro-
scopic response function and the autocorrelation
function (cf. eq 1), is valid under steady shear for
thermally driven heat conduction and particle
diffusion but not for transport phenomena driven
by a vectorial field.17–19 Since the rheodieletric
response belongs to the latter case, the Green-
Kubo theorem would not be valid rigorously for
this response. Furthermore, the entropy produc-
tion under steady shear20,21 would also result in
this lack of rigorous validity.

In this situation, it is very important to quan-
tify differences between the relaxation time/mode
distribution of the rheodielectric relaxation func-
tion (measured for PI7,8,10) and those of the end-
to-end vector autocorrelation function. For this
purpose, this section utilizes a Langevin equation
to make a kinematic analysis of the rheodielectric
response. This analysis is equivalent to an analy-
sis based on the Hamiltonian and distribution
function (made in Appendix A), but the results
are easier to discuss for the Langevin analysis.

Langevin Analysis

We consider an ensemble of type-A linear chains,
for example, PI, each being composed of Nþ1 seg-
ments and having the dipole moment ~l per unit
length of the backbone. (We consider a case of
N � 1 and do not distinguish N and Nþ1.) Since
this chain is equivalent to a totally neutral chain
having negative and positive charges �~l and ~l at
zero-th and Nth segments, the force acting on nth
segment of the chain due to a constant electric
field E in the y direction can be expressed as

FEðn; tÞ ¼
0

~lEfdðn�NÞ � dðnÞg
0

2
4

3
5 (5)

The time evolution of the position r(n, t) of nth
segment is determined by the Langevin equation
describing a balance of the frictional force, intra-
chain and interchain potential forces, the Brown-
ian force, and this FE(n, t). Within the mean-field
treatment where the interactions for a given
chain from the surrounding chains are preaver-
aged, this equation can be cast in a general form,

�f _rðn; tÞ � _C � rðn; tÞ� �þ Kðn; _cÞ � rðn; tÞ
þ FBðn; tÞ þ FEðn; tÞ ¼ 0 (6)

with
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_C ¼
0 _c 0
0 0 0
0 0 0

2
4

3
5 ðshear rate tensorÞ (7)

In eq 6, f is the segmental friction coefficient and
FB(n, t) is the Brownian force that can be safely
assumed to have a white-noise character, hFB(n,
t)FB(n0, t0)i ¼ 2IfkBTd(n � n0)d(t � t0) with I ¼
unit tensor. In general, K(n; _c) is a three-dimen-
sional tensorial operator with respect to n (having
components Kab with a, b ¼ x, y, and z) and may
explicitly depend on the shear rate _c. This K, giv-
ing the potential forces for a given chain confor-
mation r(n, t) thereby governing the chain
motion, is determined by an effective Hamiltonian
of the chain under steady shear.

The actual chain motion can be decomposed
into eigenmodes, as noted from experiments for a
special type of linear PI having inverted type-A
dipoles.1,22–24 Thus, we may safely assume that K
is a linear operator associated with the eigen-
modes. In fact, the dielectric mode distribution of
linear PI hardly changes under the steady shear
conditions examined so far,7 suggesting that the
eigenmodes are well defined and K is linear under
these conditions. (For completeness, the other
type of Langevin analysis without the assumption
of the linearity of K is later explained in Appendix
C, although this analysis cannot give explicitly
the dielectric relaxation time/intensity.)

On application of the constant electric field E
at t ¼ 0 in the shear gradient (y) direction, the
polarization of the steadily sheared type-A chains
grows in this direction with time. The unnormal-
ized dielectric relaxation function characterizing
this growth is given by Uun

ss (t; _c) ¼ (~lm/E)(hRy(1)iEss
� hRy(t)iEss), where hRy(t)iEss is the average of Ry(t)
of the chains at time t under steady shear in the
presence of the electric field (cf. Appendix B). This
function as well as the end-to-end vector auto-
correlation function in y direction, Wss(t; _c) :
hRy(t)Ry(0)iss defined in the absence of the electric
field, can be calculated from eq 6. For easy calcu-

lation, we can expand the segment position r(n, t)
with respect to the Rouse eigenfunctions, cos(ppn/
N) with p ¼ 0, 1, 2,…, as

rðn; tÞ ¼
X
p�0

XpðtÞ
YpðtÞ
ZpðtÞ

2
4

3
5 cos

ppn
N

	 

(8)

(The Rouse eigenfunctions are not necessarily the
eigenfunctions associating K but are chosen as
base functions for easy calculation.) Uum

ss (t; _c) and
Wss(t; _c) are calculated with a standard method
explained in Appendix B. The results are sum-
marized as

Uun
ss ðt; _cÞ ¼

2~l2m
Nf

X
b�1

g
½U�
b expð�kbtÞ (9a)

with

g
½U�
b ¼ 1

kb

X
p�1

ðcos pp� 1Þ Q3p�1;b

( )

�
X
p0�1

ðcosp0p� 1Þ Q�1
b;3p0�1

( ) (9b)

and

Wssðt; _cÞ ¼ 2kBT

Nf

X
b�1

g
½W�
b exp �kbt

� �
(10a)

with

g
½W�
b ¼

X
b0�1

2

kb þ kb0

X
a�1

Q�1
b;aQ

�1
b0;a

( )

�
X
p�1

ðcospp� 1ÞQ3p�1;b

( )

�
X
p0�1

ðcosp0p� 1ÞQ�1
b0;3p0�1

( )
(10b)

The parameters kb, Qi,j, and Q�1
i;j appearing in eqs

9 and 10, being dependent on _c in principle, are
related to a matrix A with its components being
defined by

A3p�2;3q�2 ¼ axx
p;q; A3p�2;3q�1 ¼ axy

p;q þ f _c; A3p�2;3q ¼ axz
p;q;

A3p�1;3q�2 ¼ ayx
p;q; A3p�1;3q�1 ¼ ayy

p;q; A3p�1;3q ¼ ayz
p;q;

A3p;3q�2 ¼ azx
p;q; A3p;3q�1 ¼ azy

p;q; A3p;3q ¼ azz
p;q ðp; q ¼ 1; 2;…Þ

(11)

Here, aab
i;j (i, j ¼ 1, 2,…; a, b ¼ x, y, z) are the

expansion coefficients of the Rouse eigenfunction
defined with respect to the ab component of the
operator, Kab, as
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Kabðn; _cÞ cos jpn
N

� �

¼
X
i�1

aab
i;j cos

ipn
N

� �
ði; j ¼ 1; 2; ::Þ (12)

(Equivalently, aab
i;j ¼ (2/N)

RN
0 dn cos(ipn/N){Kab

cos(jpn/N)}.) The parameter kb is the bth eigen-
value of the matrix A divided by f, Qi,j is the i,j
component of a matrix Q that diagonalizes A, and
Q�1

i;j is the i,j component of the inverse matrix
Q�1; namely, {Q�1AQ}ab ¼ �fkbdab with dab being
Kronecker delta.

Comparison of Uun
ss (t; _c) and Wss(t; _c)

As seen from eqs 9a and 10a, the relaxation times
of the modes, 1/Kb, are exactly the same for the
dielectric relaxation and end-to-end vector auto-
correlation functions, Uun

ss and Wss, calculated
from the rather general Langevin equation (eq 6).
Thus, even under steady shear, the terminal end-
to-end fluctuation time can be rigorously eval-
uated as the terminal dielectric relaxation time.

Now, we turn our attention to the mode distri-
bution of Uun

ss and Wss. The operator K is deter-
mined by the effective Hamiltonian, and the coef-

ficient aab
p;q appearing in eqs 11 and 12 is invariant

on exchange of a and b, for example, axy
p;q ¼ ayx

p;q.

Thus, at equilibrium, the matrix A is symmetric
(Aij ¼ Aji in eq 11 with _c ! 0) and the diagonaliz-
ing matrix Q is orthogonal (Q�1 ¼ Qþ with Qþ ¼
transpose matrix of Q). Then, the term appearing

in eq 10b, Ra�1 Q�1
b;a Q�1

b0;a, reduces to dbb0 so that

the mode intensities g
½U�
b (eq 9b) and g

½W�
b (eq 10b)

exactly coincide with each other. Since Uun and W
have the same relaxation times 1/kb, this coinci-
dence of g means that Uun and W are rigorously
proportional to each other and satisfy a relation-
ship Uun(t) ¼ {~l2m/kBT}W(t) at any t. This fact con-
firms the validity of the Green-Kubo theorem at
equilibrium.

Under steady shear, the symmetry of A breaks
because of the f _c term contributing to the compo-
nent A3p�2,3q�1 (cf. eq 11). If the other component
A3p�1,3q�2 has a nonzero value (which seems to be
the case in general), the chain dynamics in y
direction is coupled with that in x direction. For
this case, Uun

ss and Wss are not rigorously propor-
tional to each other. However, an argument based
on the shear symmetry suggests an approximate
proportionality, as explained below.

The relaxation rate Kb as well as Uun
ss (t; _c) and

Wss(t; _c) are invariant on inversion of the shear
direction and thus even functions of _c. Then, we
can generally expand these quantities as

kbð _cÞ ¼ kð0Þb þ _c2kð2Þb þOð _c4Þ (13a)

Uun
ss ðt; _cÞ ¼ Uunð0ÞðtÞ þ _c2Uunð2Þ

ss ðtÞ þOð _c4; tÞ (13b)

Wssðt; _cÞ ¼ Wð0ÞðtÞ þ _c2Wð2Þ
ss ðtÞ þOð _c4; tÞ (13c)

where the superscript ‘‘(0)’’ denotes the quantities
at equilibrium ( _c ! 0), the superscript ‘‘(2)’’ stands
for the second-order expansion coefficients of re-
spective quantities, and O( _c4) and O( _c4; t) denote
quantities of the order of _c4. Analyzing these coef-
ficients on the basis of the shear symmetry, we
can find the proportionality between Uun

ss (t; _c), and
Wss(t; _c) (validity of the Green-Kubo theorem) at
least up to the order of _c2, as explained in Appen-
dix B. This validity, deduced from a ‘‘sufficient
condition’’ for the odd and even symmetries of two
types of correlation functions introduced in Ap-
pendix B, seems to be a general consequence of
the entanglement dynamics that is equivalent to
the Rouse dynamics being modified due to topo-
logical constraints.

The validity of the Green-Kubo theorem dis-
cussed above, in particular the rigorous coinci-
dence of the relaxation times of Uun

ss (t; _c) and Wss(t;
_c), was deduced from the Langevin analysis based
on the linear operator K (cf. eq 6). As explained in
Appendix C, the other type of Langevin analysis
without utilizing K also suggests the (approxi-
mate) validity, although this analysis cannot give
explicit expressions of the relaxation times/inten-
sities. Thus, the validity of the Green-Kubo theo-
rem appears to be a rather general consequence of
the Langevin analysis.

Apart from the above argument, we generally
expect that Kb, Uun

ss and Wss are affected by the
steady shear to the same order of _c; compare eqs
13a–13c. Thus, in a semiquantitative sense, the
shear effect should be insignificant for any two of
Kb, Uun

ss , Wss if the remaining one is not signifi-
cantly affected by the shear in the range of _c
examined. Experiments3,7 indicated that the ter-
minal dielectric relaxation time se of entangled
linear PI chains, being identical to the terminal
time for the end-to-end vector fluctuation (cf. eqs
9a and 10a), is hardly affected by steady shear at
rates _c \ 30/s0e , with s0e being se at equilibrium.
This fact means that the _c2-order term for kb (eq
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13a) is actually negligible compared to the _c0-
order term at those _c. Thus, this should be the
case also for Uun

ss (eq 13b) and Wss (eq 13c) of linear
PI at _c \ 30/s0e and these Uun

ss and Wss should be
satisfactorily approximated by the equilibrium
functions obeying the Green-Kubo theorem.

All above results suggest that the Green-Kubo
theorem is valid at least up to the order of _c2 and,
more importantly, in the range of _c actually exam-
ined for PI. Consequently, the polarization Pss(t)
under steady shear can be satisfactorily expressed as

PssðtÞ ¼ � m~l2

kBT
R2

y

D E
ss

Z t
�1

dsEðsÞ @Uss t� sð Þ
@t

ðfor entangled linear PI at _c\ 30=soe Þ (14a)

with

UssðtÞ ¼
Ry tð ÞRy 0ð Þ� �

ss

R2
y

D E
ss

(14b)

The corresponding dielectric intensity under
steady shear, Dess, is written as

Dess ¼ F
4p~l2

kBT

� �
m R2

y

D E
ss

(14c)

where the correction factor for the internal elec-
tric field, F, and the prefactor of 4p (in MKSA
units) have been again introduced (cf. eq 4).

Additional Comments

Concerning the _c-insensitivity of se (%1/k1) experi-
mentally observed at _c \ 30/soe , one might argue
that the chain motion at those _c remains essen-
tially in equilibrium thereby giving k1 % k1

(eq).
However, this is not the case, as noted from signif-
icant nonlinearities of viscoelastic data observed
in the same range of _c. As an example, Fig. 1
shows the data of se, Dess, and the steady state vis-
cosity g measured for an entangled PI solution
(molecular weight MPI ¼ 1.2 � 106, concentration
CPI ¼ 15 wt % in an oligomeric solvent); see
unfilled symbols. These data are normalized by
the respective equilibrium values and plotted
against the normalized shear rate _csoe . The dielec-
tric se and Dess are hardly dependent on _c, while g
strongly decreases with increasing _c. Thus, the PI
chains at those _c exhibit prominently nonequili-
brium dynamics that leads to the significant non-
linearity for the viscoelastically detected orienta-
tional anisotropy, together with a very small

nonlinearity for the dielectrically detected end-to-
end fluctuation.

The shear-insensitivity of the rheodielectric
data unequivocally indicates that the orienta-
tional memory of the end-to-end vector of the PI
chains (in the shear gradient direction) is hardly
affected by steady shear at _c \ 30/soe . This fact
could be related to a mechanism of flow-induced
dynamic tube dilation for linear PI chains under
steady shear.7 However, details of this mechanism
have not been well addressed theoretically. In
addition, no available molecular model appears
to describe consistently/quantitatively the visco-
elastic and rheodielectric data shown in Figure 1.
Further theoretical study is strongly desired for
this problem.

In relation to the difference between those
viscoelastic and rheodielectric data, we remember
that a molecular simulation (NAPLES simulation)
based on the primitive chain network model25 rea-
sonably mimicked the data.26 In the simulation,

Figure 1. Dielectric relaxation time se( _c), dielectric
relaxation intensity De( _c), and the viscosity g( _c) mea-
sured at 30 	C for an entangled PI solution (in oligo-
meric butadiene; MPI ¼ 1.2 � 106 and CPI ¼ 15 wt %
for PI) under fast steady shear. These data are nor-
malized by respective zero-shear values and plotted
against a reduced shear rate _cs0e ; see unfilled symbols.
The data were taken from ref. 7, with permission.
Filled symbols indicate the normalized se( _c), De( _c),
and g( _c) obtained from the NAPLES simulation (cf.
Appendix D).
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positive and negative charges (~l and �~l) were
placed at the chain ends, and the polarization due
to a weak electric field was directly evaluated
from the spatial distribution of the chain ends.
(The resulting dielectric relaxation function was
close to Uss(t) defined by eq 14b,26 lending sup-
port to eq 14.) For obtaining better statistics of
the NAPLES simulation, it was again made this
study (cf. Appendix D) for a larger number of
chains and over a longer time scale compared to
the previous study.26 The simulated results,
shown with the filled symbols in Figure 1, are
considerably close to the data (unfilled symbols).
Although the simulated se decreases with _c more
rapidly than the experimental se data and the
dynamics considered in the simulation needs to
be refined, the simulation captures qualitatively
a difference of the nonlinearities for se and g
(stronger for the latter).

Dielectric Signal from PI under LAOS

The dielectric response of entangled linear PI
chains under LAOS has been examined experi-
mentally.11,12 However, to our knowledge, no
analysis has been made for the theoretical
expression of the response under LAOS. We
here attempt to make an approximate analysis
of this response.

The validity of the Green-Kubo theorem under
LAOS can be examined, in principle, through the
Langevin analysis similar to that under the
steady shear explained in the previous section.
However, the analysis becomes much more com-
plicated under LAOS because the shear rate ten-
sor (cf. eq 7) oscillates with time for this case.
Thus, considering the validity of the Green-Kubo
theorem for PI under steady shear at _c \ 30 /soe ,
we attempt to utilize eq 1 (representing this theo-
rem) as a starting equation in our analysis under
LAOS. For this attempt, we first need to examine
a relationship between the dielectric soe of PI at
equilibrium and the maximum shear rate _cmax ¼
c0X for LAOS at the amplitude c0 and the angular
frequency X. The rheodielectric LAOS experi-
ments10,11 were conducted under conditions, c0 

1.6 and X 
 3/soe and/or c0 
 3.6 and X % 0.1/soe ,
that is, in a range of _cmax 
 5/soe . Thus, those
experiments were conducted well in a range of _c
\ 30/soe (where the Green-Kubo theorem holds
under steady shear), satisfying the first criterion
for the use of eq 1 under the LAOS conditions
examined so far. As the second criterion, we need
to examine if some fractional interval of time

during one cycle of LAOS is long enough to realize
a (pseudo) stationary state. Rigorously speaking,
the stationary state is never realized under LAOS
because the conformational distribution function
should be synchronized with LAOS to oscillate at
X. However, the experimentally examined X is
not significantly larger than 1/soe , which tempts us
to approximate that the (pseudo) stationary state
is realized in some fractional interval of time dur-
ing one cycle of LAOS. This approximation is very
crude but necessary for making a simple analysis
of the rheodielectric response under LAOS. We
believe that this crude approximation is accept-
able as the first attempt of analysis in the absence
of a full theory of this response.

Within this approximation, we utilize eq 1 as
the starting equation in our LAOS analysis:

PLAOSðtÞ ¼ ~l2

kBT

Z t
�1

dsEðsÞ

�
Z

dpdq fRjRy;jðtÞg d

ds
RjRy;jðsÞ
� �
 �

fLAOSðp;q; sÞ

(15)

Here, ƒLAOS(p, q, s) is the distribution function in
the phase space (p, q) at time s under LAOS.
(ƒLAOS is defined in the absence of the electric
field.) This ƒLAOS(p, q, s) is synchronized with
LAOS to oscillate at X with some phase difference
d (defined with respect to the electric field at time
0). In the simplest case, ƒLAOS(p, q, s) can be writ-
ten in a form

fLAOSðp;q; sÞ ¼ Kbase p;qð Þ þ Kosc p;qð Þ sin Xsþ dð Þ
Ibase þ Iosc sin Xsþ dð Þ

¼ Kbase p;qð Þ
Ibase

þ Kosc p;qð Þ
Iosc

r sinðXsþ dÞ

 �

�
X
a�0

�rð ÞasinaðXsþ dÞ (16)

with

Ibase ¼
Z

dp dq Kbaseðp;qÞ;

Iosc¼
Z

dp dq Koscðp;qÞ; and r ¼ Iosc

Ibase

ð0\r\1Þ (17)

In eq 16, Kbase(p, q) and Kosc(p, q) indicate the
unnormalized distribution functions representing
the nonoscillatory (base) and oscillatory parts of
ƒLAOS(p, q, s), respectively. The denominator in
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the first line of eq 16 guarantees the normaliza-
tion, $ dp dq fLAOS (p, q, s) ¼ 1 at any s.

Substituting eq 16 into eq 15, we obtain

PLAOSðtÞ ¼ m~l2

kBT

Z t
�1

ds EðsÞ
(
@Wbase t; sð Þ

@s

þ @Wosc t; sð Þ
@s

r sinðXsþ dÞ
)X

a�0

�rð ÞasinaðXsþ dÞ

(18)

where m is the chain number density, and
Wbase(t, s) and Wosc(t, s) are defined as

Wbaseðt; sÞ � RyðtÞRyðsÞ
� �base

LAOS

¼
R
dp dqfRy tð ÞRy sð ÞgKbase p;qð ÞR

dp dqKbase p;qð Þ (19a)

Woscðt; sÞ � RyðtÞRyðsÞ
� �osc

LAOS

¼
R
dp dqfRy tð ÞRy sð ÞgKosc p;qð ÞR

dp dqKosc p;qð Þ (19b)

As seen in eq 19, the polarization under LAOS,
PLAOS(t), includes information on the unnormal-
ized correlation functions Wbase(t, s) and Wosc(t, s).
This information is analyzed below.

Analysis of Components of PLAOS(t)

Rigorously speaking, the stationary state is never
realized under LAOS because of the oscillation of
ƒLAOS, and both Wbase(t, s) and Wosc(t, s) should
depend on t and s separately. However, the corre-
lation of the chain conformations at times t and s,
specified by Wbase(t, s) and Wosc(t, s) (cf. eq 19),
should decay as a function of the interval t � s if
this interval is sufficiently longer than the LAOS
period. For this reason, we may approximate
Wbase(t, s) and Wosc(t, s) as functions of t � s to
examine the slow dynamics of the chain under
LAOS. This approximation should lead to a
smaller error compared to the approximate use of
the Green-Kubo theorem (based on the assump-
tion of pseudo stationary state in some fractional
interval of time during one cycle of LAOS, as
explained for eq 15) and is acceptable in our anal-
ysis based on this use.

From this argument, we may express Wbase and
Wosc as

Wbase ffi Wbaseðt� sÞ ¼ Ryðt� sÞRyð0Þ
� �base

LAOS

¼ R2
y

D Ebase
LAOS

X
a�1

gbase;a exp � t� sð Þ
sbase;a


 �
(20a)

Wosc ffi Woscðt� sÞ ¼ Ryðt� sÞRyð0Þ
� �osc

LAOS

¼ R2
y

D Eosc
LAOS

X
a�1

gosc;a exp � t� sð Þ
sosc;a


 �
(20b)

with X
a�1

gbase;a ¼
X
a�1

gosc;a ¼ 1 (21)

and

R2
y

D Ebase
LAOS

¼
R
dp dqR2

yK
base p;qð ÞR

dp dqKbase p;qð Þ and

R2
y

D Eosc
LAOS

¼
R
dp dqR2

yK
osc p;qð ÞR

dp dqKosc p;qð Þ

(22)

In eq 20, we have factorized Wn(t � s) (n ¼ base,
osc) into an intensity part, hR2

yinLAOS, and a nor-
malized, time-dependent part, Ra�1 gn,a exp{�(t �
s)/sn,a} (¼ 1 at s ¼ t). Substituting eq 20 into eq 18
with E(s) ¼ E0sin xs (small electric field), we find

kBT

m~l2E0
PLAOSðtÞ

¼ R2
y

D Ebase
LAOS

( X
a�1

gbase;a
1

1þ x2s2base;a

 !
sinxt

�
X
a�1

gbase;a
xsbase;a

1þ x2s2base;a

 !
cosxt

)

� R2
y

D Ebase
LAOS

r

2
fSbase

� ðx;XÞ sinðx� XÞt
þ Cbase

� ðx;XÞ cosðx� XÞtg
þ R2

y

D Ebase
LAOS

r

2
fSbase

þ ðx;XÞ sinðxþ XÞt
þ Cbase

þ ðx;XÞ cosðxþ XÞtg
þ R2

y

D Eosc
LAOS

r

2
fSosc

� ðx;XÞ sinðx� XÞt
þ Cosc

� ðx;XÞ cosðx� XÞtg
� R2

y

D Eosc
LAOS

r

2
fSosc

þ ðx;XÞ sinðxþ XÞt
þ Cosc

þ ðx;XÞ cosðxþ XÞtg
þOðrb sinðx� bXÞ; b � 2Þ (23)

with
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Sn
�ðx;XÞ ¼

X
a�1

gn;a
x� Xð Þsn;a cos dþ sin d

1þ x� Xð Þ2s2n;a
;

Cn
� x;Xð Þ ¼

X
a�1

gn;a
cos d� x� Xð Þsn;a sin d

1þ x� Xð Þ2s2n;a
;

Sn
þðx;XÞ ¼

X
a�1

gn;a
xþ Xð Þsn;a cos d� sin d

1þ xþ Xð Þ2s2n;a
;

Cn
þ x;Xð Þ ¼

X
a�1

gn;a
cos dþ xþ Xð Þsn;a sin d

1þ xþ Xð Þ2s2n;a
ðn ¼ base; oscÞ ð24Þ

PLAOS(t) splits into a series of components oscillat-
ing at the angular frequency of the electric field x
and at x � bX with b ¼ 1, 2,…, as clearly seen in
eq 23. The components oscillating at x � bX
emerge because PLAOS(t) detects the oscillation of
fLAOS due to LAOS being coupled with the oscilla-
tory electric field. This coupling makes a contrast
between the rheodielectric responses under LAOS
and steady shear: The response under steady
shear oscillates only at x (and is more easily ana-
lyzed compared to that under LAOS) because the
distribution function under steady shear is inde-
pendent of time.

The information for the correlation function
Wbase(t) under LAOS, that is, the mode distribu-
tion {gbase,a, sbase,a} and the intensity hR2

yibaseLAOS (eqs
20a and 22), is included in the component of
PLAOS(t) oscillating at x; see the first term in eq
23. On the other hand, the information for Wosc(t),
{gosc,a, sosc,a} and hR2

yioscLAOS (eqs 20b and 22), is
included in the components oscillating at x � bX
(b ¼ 1, 2, …); see the coefficients S and C given by
eq 24. Namely, the full information for the chain
dynamics under LAOS, being represented by a set
of Wbase(t) and Wosc(t), can be obtained only when
all these components of PLAOS(t) are measured.
However, in the rheodielectric studies under
LAOS conducted so far,11,12 only the component
oscillating at x was measured and converted to
e0LAOS(x) and e00LAOS(x). Thus, the full information
for the chain dynamics under LAOS was not
obtained in those studies.

Nevertheless, it is still informative to examine
the molecular meaning of the e00LAOS(x) data in lit-
erature.11,12 From the second term in the first line
of eq 23, we find

e00LAOSðxÞ ¼ DeLAOS

X
a�1

gbase;a
xsbase;a

1þ x2s2base;a
(25)

with

DeLAOS ¼ F
4p~l2

kBT

� �
m R2

y

D Ebase
LAOS

(26)

(We have again introduced the correction factor F
for the internal electric field and the prefactor of
4p in MKSA units; cf. eq 4). For well entangled
linear PI, Höfl et al.11 and Capaccioli et al.12

showed that the x dependence of the e00LAOS(x)
data (i.e., relative dielectric mode distribution)
hardly changes under LAOS, in particular at low
x where the global dynamics of PI is detected.
This fact suggests that the relaxation time and
mode distribution of the unnormalized correlation
function, Wbase(t), are insensitive to LAOS. This
result appears to be in harmony with the shear-
rate insensitivity of the rheodielectric data of PI
measured under steady shear.7

Further Examination of e00LAOS(x) Data

For well-entangled bulk PI (MPI ¼ 55 � 103; 
10
entanglements per chain), Höfl et al.11 reported
that the rheodielectric intensity DeLAOS (eval-
uated from the e00LAOS(x) data) decreased rather
significantly with increasing LAOS amplitude c0.
Specifically, at the LAOS frequency X % 3/soe ,
DeLAOS decreased by a factor of % 30% with
increasing c0 to 1.6.11 (A decrease of DeLAOS,
though weaker in magnitude, was also reported
by Capaccioli et al.12).

On the basis of eq 26, one may attribute this
decrease of DeLAOS to a decrease of the average
size of a PI chain in the shear gradient direction.
However, this assignment is not valid because the
squared average of the chain size, hR2

yiLAOS, is cor-
rectly defined as an average of R2

y over the distri-
bution function ƒLAOS(p, q, s) during one cycle of
LAOS (for a time period of 2p/X), not as the aver-
age hR2

yibaseLAOS defined with respect to the nonoscil-
latory part of this function, Kbase(p, q) (cf. eq 22).
From the first line in eq 16 together with a mathe-
matical formula,

R p
0 dx f1þ a cos xg�1 ¼ p=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
ð0\ a\ 1Þ, we find

R2
y

D E
LAOS

� X
2p

Z2p=X
0

ds

Z
dp dqR2

y fLAOSðp;q; sÞ

¼ R2
y

D Ebase
LAOS

1� hffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p

 �

þ R2
y

D Eosc
LAOS

(27a)

with
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h ¼
R2

y

D Eosc
LAOS

R2
y

D Ebase
LAOS

and r ¼ Iosc

Ibase
ð0\ r\ 1Þ (27b)

In general, the oscillatory part of the distri-
bution function, Kosc(p, q), would give a stronger
rheodielectric effect compared to the base part,

Kbase(p, q), and thus r ¼ Iosc=Ibase ¼ fR dp dq
�

� Koscðp;qÞg=fR dpdq Kbaseðp;qÞgÞ would increase

with increasing c0. On this increase of r, hR2
yiLAOS

would become considerably larger than hR2
yibaseLAOS

(as can be noted from eq 27a), suggesting that the

decrease of DeLAOS (!hR2
yibaseLAOS) is not equivalent

to a decrease of hR2
yiLAOS by the same magnitude.

We also note that the rheodielectric intensity

under steady shear, Dess 
 hR2
yiss (cf. eq 14c),

hardly decreases on an increase of shear rate up
to 30/soe ; see Figure 1. This fact suggests that the
PI chain dimension in the shear gradient direc-
tion is not significantly affected by the fast steady
shear (and possibly not by LAOS either).

The above difference between hR2
yibaseLAOS

(
 DeLAOS) and hR2
yiLAOS can be further examined

from the NAPLES simulation. For this purpose,
we conducted the simulation for type-A chains
(9.6 entanglements per chain on average) under
the LAOS condition, as explained in Appendix D.
The LAOS frequency, X, was set at 3/soe , which
mimics the experimental condition by Höfl et al.11

Each chain has small charges ~l and �~l at its
ends, as explained in the previous section. In the

simulation, the macroscopic polarization and the
corresponding e00LAOS(x) were directly evaluated
from the spatial distribution of the chain ends
without utilizing any correlation function. In
Figure 2, the simulated e00LAOS(x) is normalized
by the dielectric intensity Deeq at equilibrium
and plotted double-logarithmically against the
normalized frequency of the electric field, xsoe .
The simulated dielectric relaxation time se(c0; X)
(
 reciprocal of the peak frequency) decreases
with increasing c0. Experiments indicated no
significant decrease of se(c0; X) with c0,

11,12 which
suggests a need to refine the chain dynamics
considered in the simulation. However, the simu-
lated dielectric mode distribution (seen as the
shape of the e00LAOS curve) is not significantly
affected by LAOS, which is in harmony with the
experiments.11,12

In the simulation, hR2
yiLAOS was evaluated

straightforwardly as the squared end-to-end dis-
tance of the chain in the shear gradient direction
averaged over many chains during one cycle of
LAOS, and the hR2

yiLAOS/hR2
yieq ratio was obtained

consequently. The dielectric intensity DeLAOS was
obtained from the simulated e00LAOS (Fig. 2), and
the hR2

yibaseLAOS/hR2
yieq ratio was evaluated as a ratio

of DeLAOS under LAOS to Deeq at equilibrium. In

Figure 2. Dielectric loss e00LAOS(x) of entangled PI
(9.6 entanglements per chain on average) under
LAOS obtained from the NAPLES simulation; see Ap-
pendix D. The LAOS condition, c0 (
 3.2) and X (¼ 3/
s0e ), is similar to the experimental condition utilized
by Höfl et al.11 e00LAOS(x) is normalized by the dielec-
tric intensity at equilibrium, Deeq, and plotted against
normalized frequency of the electric field, xs0e .

Figure 3. hR2
yiLAOS/hR2

yieq and hR2
yibaseLAOS/hR2

yieq ratios
obtained from the NAPLES simulation for entangled
PI (9.6 entanglements per chain on average) under
LAOS; see Appendix D. The LAOS condition, c0 (

3.2) and X(¼ 3/s0e ), is similar to the experimental con-
dition utilized by Höfl et al.11 The ratios are plotted
against the LAOS amplitude, c0.
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Figure 3, the hR2
yiLAOS/hR2

yieq and hR2
yibaseLAOS/hR2

yieq
ratios thus obtained are plotted against the LAOS
amplitude, c0. Clearly, the hR2

yibaseLAOS/hR2
yieq ratio

(squares) decreases considerably with increasing
c0 to 3.2 (which mimics the experiments11) while
the hR2

yiLAOS/hR2
yieq ratio (circles) decreases less

significantly. This result is in harmony with the
above discussion for difference between hR2

yibaseLAOS

and hR2
yiLAOS.

CONCLUDING REMARKS

We have examined the molecular expression of
rheodielectric response of type-A chains (e.g., PI)
having small dipoles. The Langevin analysis sug-
gested that the relaxation time is exactly the same
for the rheodielectric relaxation function and the
end-to-end vector autocorrelation function under
steady shear and that the relaxation mode distri-
bution coincides for these functions at least up to
the second order of shear rate. Thus, the Green-
Kubo theorem satisfactorily describes the rheodi-
electric response under steady shear up to a fairly
high shear rate where the rheological nonlinearity
is clearly observed experimentally (while the rheo-
dielectric data are not much affected by the
shear). Consequently, the rheodielectric intensity
at those shear rates is proportional to the mean-
square chain size in the shear gradient direction,
hR2

yi (¼ average over the time-independent confor-
mational distribution function).

In contrast, under LAOS, the distribution func-
tion fLAOS is synchronized with LAOS to split into
a time-independent base part and an oscillatory
part. Correspondingly, the rheodielectric response
(polarization PLAOS(t)) also splits into components
oscillating at x and x � bX (b ¼ 1, 2, …), where x
and X are the angular frequencies of electric field
and LAOS, respectively. The components of
PLAOS(t) oscillating at x and x � bX correspond to
the end-to-end vector correlation averaged over
the base and oscillatory parts of fLAOS, respec-
tively. Because of the splitting, the e00LAOS(x) data
(equivalent to the component of PLAOS oscillating
at x) do not have the intensity being proportional
to hR2

yi. In other words, the e00LAOS(x) data cannot
give the information for the mean-square chain
size defined with respect to fLAOS. However, the
e00LAOS(x) data can still give some useful informa-
tion for the chain dynamics: the relative mode dis-
tribution and relaxation time of the data are
equivalent to those of the end-to-end vector fluctu-
ation averaged over the base part of fLAOS. Thus,

the experimentally observed LAOS insensitivity
of the relaxation time of the e00LAOS(x) data sug-
gests the LAOS insensitivity of the fluctuation
time defined with respect to this part of fLAOS.
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APPENDIX A: DERIVATION OF EQ 1 AT
EQUILIBRIUM13

Applying a time (t) dependent weak electric field
E(t) to an equilibrium system of type-A chains,
we measure the macroscopic polarization P(t) in
the direction of the field (¼ y direction). This
P(t) is expressed in terms of the end-to-end
dipole ~lRy,j of jth chain in the system (with ~l ¼
type-A dipole moment per unit length of the
chain backbone and Ry,j ¼ y component of the
end-to-end vector) as P(t) ¼ $dp dq {Rj ~lRy,j}
f(p, q, t). Here, f(p, q, t) is the conformational
distribution function in the presence of the elec-
tric field: f(p, q, t) is defined in the phase space
specified by general momentum p and coordi-
nate q. For the weak field E(t), f(p, q, t) is given
by a sum of the time-independent equilibrium
distribution function, fo(p, q), and a perturba-
tion due to the small electric field, Df(p, q, t).
Since the macroscopic polarization is exclusively
due to the electric field (i.e., $dp dq {Rj ~lRy,j}
fo(p, q) ¼ 0), P(t) is written as

PðtÞ ¼
Z

dp dq fRj~lRy;jg Df ðp;q; tÞ (A1)

The Hamiltonian of the system, determining the
time evolution of Df(p, q, t) and thus of P(t), is
given by

Hðp;q; tÞ ¼ Hoðp;qÞ � fRj ~lRy;jgEðtÞ (A2)

Here, Ho(p, q) is the equilibrium Hamiltonian for
the configuration (p, q) in the phase space, and
the �{Rj ~lRy,j}E(t) term represents the electro-
static energy under the electric field. The time
evolution of the distribution function f (¼ fo þ Df)
is described by an equation @f/@t ¼ [H, f], where
[A, B] is the Poisson bracket defined as [A,B]
: (@A/@q)(@B/@p) � (@A/@p)(@B/@q) for physical
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quantities A(p, q) and B(p, q).14,15 Since fo is in-
dependent of time (i.e., @fo/@t ¼ [Ho, fo] ¼ 0) and
the perturbation due to the electric field is small
(i.e., [{Rj ~lRy,j}E, Df] % 0), the time evolution
equation of Df can be expressed as

@Df
@t

¼ ½Ho;Df � � ½fRj ~lRy;jg; f o�EðtÞ

¼ ½Ho;Df � þ ½fRj ~lRy;jg;Ho� f
o p;qð Þ
kBT

EðtÞ (A3)

In eq A3, we have utilized a relationship, fo 

exp(�Ho/kBT) with kB ¼ Boltzmann constant and
T ¼ absolute temperature. Equation A3 can be
readily solved to give

Df ðp;q; tÞ ¼
Z t
�1

dsEðsÞe�ðt�sÞL½fRj ~lRy;jg;Ho�

� f o p;qð Þ
kBT

(A4)

where L is the Liouville operator defined as LA
: [Ho, A].

Substituting eq A4 into eq A1, we find

PðtÞ ¼
Z t
�1

dsEðsÞ
Z

dp dqfRj ~lRy;jge�ðt�sÞL

� fRj~lRy;jg; Ho
� � f o p;qð Þ

kBT
¼
Z t
�1

dsEðsÞ
Z

dp dq

� eðt�sÞLfRj~lRy;jg
n o

fRj ~lRy;jg;Ho
� � f o p;qð Þ

kBT
(A5)

In eq A5, we have utilized a feature of the Liou-
ville operator, $dp dq A(p, q){Ln B(p, q)} ¼ $dp
dq {(�L)n A(p, q)}B(p, q). The terms {Rj ~lRy,j} and
[{Rj ~lRy,j}, H

o] appearing in eq A5 are defined at
time s. These terms are rewritten as [{Rj ~lRy,j},
Ho] ¼ �[Ho,{Rj ~lRy,j}] ¼ d{Rj ~lRy,j(s)}/ds and

eðt�sÞL{Rj ~lRy,j}at time s ¼ {Rj ~lRy,j}at time t, where we
have utilized features of the Poisson bracket and
Liouville operator, [Ho, A]at time s ¼ �dA/ds and

etL Aat time 0 ¼ Aat time t for a physical quantity A.
Considering these results, we can rewrite eq A5 as

PðtÞ ¼ ~l2

kBT

Z t
�1

dsEðsÞ
Z

dp dqfRjRy;jðtÞg

� d

ds
RjRy;jðsÞ
� �

f oðp;qÞ (A6)

Equation A6 is identical to eq 1 in the text.

APPENDIX B: LANGEVIN ANALYSIS

Solution of Langevin Equation

The Langevin equation describing the time evo-
lution of the segment position r(n, t) of type-A
chain under shear and electric fields, eq 6 in the
text, can be rewritten as a series of coupled
time evolution equations for the amplitudes of
the Rouse eigenmodes, {Xp(t), Yp(t), Zp(t)} with p
� 0 (defined by eq 8). Considering the independ-
ence of the internal motion of the chain and the
motion of center of mass (described by the
Rouse modes with p � 1 and p ¼ 0, respec-
tively), we may introduce extended amplitudes
n, with its component being defined by n3p�2(t)
¼ Xp(t), n3p�1(t) ¼ Yp(t), and n3p(t) ¼ Zp(t) with p
� 1, and compactly express this series of equa-
tions as

f
d

dt
nðtÞ ¼ A � nðtÞ þBðtÞ þD (A7)

Here, f is the segmental friction coefficient and A
is the matrix defined by eqs 11 and 12 in the text.
B is a vector with its components defined as the
Fourier components of the Brownian force in the
a direction, FB,a(n, t) (a ¼ x, y, z):

BjðtÞ ¼ 2

N

ZN
0

dnFB;aðn; tÞ cos ppn
N

	 


with j ¼ 3p� 2; 3p� 1; and 3p for

a ¼ x; y; and z; respectively (A8)

D is a vector composed of Fourier components of
the electrical force (FE specified by eq 5),

Dj ¼ 0 for j ¼ 3p� 2 and 3p;

Dj ¼ 2~lE
N

ðcospp� 1Þ for j ¼ 3p� 1
(A9)

We may introduce a matrix Q that diagonalizes A
to solve eq A7 by a standard method. The solu-
tion, obtained for Yp(t) (¼ n3p�1(t)) and Xp(t) (¼
n3p�2(t)), can be summarized as

XpðtÞ
YpðtÞ

" #
¼
X
b�1

Q3p�2;b

Q3p�1;b

" #(
g0b exp½�kbt�

þ 1

f

Z t
0

dt0Q�1
b;a½Baðt0Þ þDaðt0Þ� exp½�kbðt� t0Þ�

)

(A10)
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with

g0b ¼
X
j�1

Q�1
b;j njð0Þ (A11)

Here, Qi,j and Q�1
i;j are the i,j components of Q and

its inverse matrix Q�1, respectively, and Kb is
b-th eigenvalue of A divided by f, that is,
{Q�1AQ}ab ¼ �fKbdab.

Since the y component of the end-to-end vec-
tor is given by Ry(t) ¼ Rp�1 Yp(t){cos pp�1}, the
polarization Pss(t) under steady shear at a time
t after imposition of a small constant electric
field, E ([ 0), is straightforwardly obtained from
eq A10 as

Pssðt; _cÞ ¼ m~l Ryðtþ sÞ� �E>0

s!1
¼ E Uun

ss ð0; _cÞ � Uun
ss ðt; _cÞ

� � (A12)

where Uun
ss (t; _c) is the unnormalized dielectric

relaxation function given by

Uun
ss ðt; _cÞ ¼

2~l2m
Nf

X
b�1

g
½U�
b exp �kbt

� �
(A13a)

with

g
½U�
b ¼ 1

kb

X
p�1

ðcos pp� 1ÞQ3p�1;b

( )

�
X
p0�1

ðcos p0p� 1ÞQ�1
b0;3p0�1

( )
(A13b)

In derivation of eq A13, we have utilized a rela-
tionship deduced from the white noise character
of the Brownian force, hBj(n, t)i ¼ 0. (Note that
neither the autocorrelation, hRy(t þ s)Ry(s)is!1,
nor the crosscorrelations, hRy(t þ s)Rx(s)is!1 and
hRx(t þ s)Ry(s)is!1, contribute to Pss(t; _c); see eq
A12.) Similarly, we can utilize the other relation-
ship deduced from the white noise character,
hBi(t)Bj(t

0)i ¼ 4fkBTN
�1dijd(t � t0), to find an

expression of the end-to-end vector correlation
function from eq A10 with Da ¼ 0 (in the absence
of the electric field),

Wssðt; _cÞ � hRyðtÞRyð0ÞiE¼0
ss

¼ 2kBT

Nf

X
b�1

g
½W�
b exp �kbt

� � (A14a)

with

g
½W�
b ¼

X
b0�1

2

kb þ k0b

X
a�1

Q�1
b;aQ

�1
b0;a

( )(X
p�1

ðcos pp�1Þ

�Q3p�1;b

) X
p0�1

ðcos p0p�1ÞQ�1
b0;3p0�1

( )
(A14b)

Equations A13 and A14, being identical to eqs 9
and 10 in the text, demonstrate that the dielectric
modes and the end-to-end vector fluctuation
modes have the same relaxation times (1/kb) even
under steady shear. In contrast, the mode inten-
sities g

½U�
b and g

½W�
b do not exactly coincides with

each other (cf. eqs A13b and A14b). However, an
argument related to the shear symmetry enables
us to deduce the coincidence of g

½U�
b and g

½W�
b , at

least up to the order of _c2, as explained below.

Perturbation Expansion

Since the matrix A (determined by the operator
K in eq 6) depends on the shear rate _c in gen-
eral, the diagonalizing matrix Q and its inverse
matrix Q�1 are also dependent on _c. Thus, Q
and Q�1 can be expanded, up to O( _c2), as

Q ¼ Qð0Þ þ _cQð1Þ þ _c2Qð2Þ;

Q�1 ¼ ~Q
ð0Þ þ _c ~Q

ð1Þ þ _c2 ~Q
ð2Þ (A15)

Here, the superscripts ‘‘(0)’’, ‘‘(1)’’, and ‘‘(2)’’ stand
for the zero-th, first, and second-order expansion
coefficients. The zero-th Q(0) and Q̃(0), respec-
tively, are identical to Q and Q�1 at equilibrium
and satisfy an orthogonal relationship (because A
is exactly symmetric at equilibrium),

~Qð0Þ ¼ ½Qð0Þ��1 ¼ ½Qð0Þ�þ ðtranspose of Qð0ÞÞ
(A16)

The first and second-order coefficients for Q�1,
Q̃(1) and Q̃(2), are not necessarily identical to the
inverse matrices of the coefficients for Q, Q(1) and
Q(2). Since QQ�1 ¼ Q�1Q ¼ I ¼ order of _c0, these
coefficients should satisfy relationships,

Qð0Þ ~Qð1Þ þQð1Þ ~Qð0Þ ¼ ~Qð0ÞQð1Þ þ ~Qð1ÞQð0Þ ¼ 0

(A17)

Qð0Þ ~Qð2Þ þQð1Þ ~Qð1Þ þQð2Þ ~Qð0Þ

¼ ~Qð0ÞQð2Þ þ ~Qð1ÞQð1Þ þ ~Qð2ÞQð0Þ ¼ 0 (A18)

Considering the above features of Q and Q�1, we
can examine the symmetries of two correlation
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functions, Syx(n, n0, t) : huy(n, t)ux(n
0, 0)i and

Syy(n, n0, t) : huy(n, t)uy(n
0, 0)i, defined with

respect to the y and x components of the bond vec-
tor u(n, t) (¼ @r(n, t)/@n) under steady shear. The
symmetries of these functions provide us with
useful information for the mode distribution of
the unnormalized dielectric relaxation function
Uun

ss (t; _c) and end-to-end vector correlation func-
tion Wss(t; _c), as explained below.

The steady state is considered to be already
achieved at time 0. Then, from eq A10, Syx and
Syy are easily calculated as

Syxðn;n0; tÞ ¼
X
p;p0

pp0p2

N2
sin

ppn
N

	 


� sin
p0pn0

N

� �
hYpðtþ sÞXp0 ðsÞis!1 (A19a)

with

Ypðtþ sÞXp0 ðsÞ� �
s!1 ¼ 4kBT

Nf

X
b;b0�1

Q3p�1;bQ3p0�2;b0

�
X
a�1

Q�1
b;aQ

�1
b0;a

( )
exp �kbt

� �
kb þ kb0

(A19b)

and

Syyðn;n0; tÞ ¼
X
p;p0

pp0p2

N2
sin

ppn
N

	 


� sin
p0pn0

N

� �
hYpðtþ sÞYp0 ðsÞis!1 (A20a)

with

Ypðtþ sÞYp0 ðsÞ
� �

s!1¼ 4kBT

Nf

X
b;b0�1

Q3p�1;bQ3p0�1;b0

�
X
a�1

Q�1
b;aQ

�1
b0;a

( )
exp �kbt

� �
kb þ kb0

(A20b)

A simple consideration of shear symmetry indi-
cates that Syx changes its sign on inversion of the
shear direction and is an odd function of _c. In con-
trast, Syy is invariant to this inversion and is an
even function of _c (which is the case also for
Uun

ss (t; _c) and Wss(t; _c)). Thus, at any time t and for
any indices p and p0, the terms of the order of _c2k

and _c2k þ 1 (k ¼ 0, 1,…) obtained after expansion
with respect to _c are required to vanish for hYp(t þ
s)Xp0(s)is!1 and hYp(t þ s)Yp0(s)is!1, respectively.
The relaxation rate is expanded as kb ¼ kð0Þb þ
_c2kð2Þb þ O( _c4) (even function of _c; cf. eq 13a), and
Q and Q�1 are expanded in the form of eq A15.
Considering these expansion forms as well as the
orthogonal feature of Q(0) (eq A16), we can calcu-

late the O( _c2k) and O( _c2k þ 1) terms from eqs A19b
and A20b to find the conditions satisfying this
requirement, as explained below.

The O( _c0) term for hYp(t þ s)Xp0(s)is!1 (¼{2kBT/

Nf}Rb�1Q
ð0Þ
3p�1;bQ

ð0Þ
3p0�2;b{k

ð0Þ
b }�1exp{�kð0Þb t}) is to van-

ish for any p, p0 and at any t. Thus, we find

Q
ð0Þ
3p�1;bQ

ð0Þ
3p0�2;b ¼ 0 for any p;p0; and b (A21)

Namely, Q
ð0Þ
3p�1;b and Q

ð0Þ
3p0�2;b at equilibrium cannot

simultaneously have nonzero values when their
second indices (b) are the same. (This feature of
Q

ð0Þ
3p�1;b and Q

ð0Þ
3p0�2;b is necessary to guarantee the

Gaussian conformation of the chain at equilibrium.)
The O( _c1) term for hYp(t þ s)Yp0(s)is!1, required

to vanish at any t and for any p, p0, is expressed

as {2kBT/Nf}Rb�1h
ð1Þ
p;p0;b{k

ð0Þ
b }�1exp(�kð0Þb t), with the

coefficient h(1)
p,p0,b being given by

h
ð1Þ
p;p0;b ¼ Q

ð0Þ
3p�1;bQ

ð1Þ
3p0�1;b þQ

ð1Þ
3p�1;bQ

ð0Þ
3p0�1;b

þ
X
b0�1

2Q
ð0Þ
3p�1;bQ

ð0Þ
3p0�1;b0

1þ kð0Þ
b0 =k

ð0Þ
b

n o X
a�1

~Q
ð0Þ
b;a

~Q
ð1Þ
b0;a þ ~Q

ð1Þ
b;a

~Q
ð0Þ
b0;a

	 
( )

(A22)

This h
ð1Þ
p;p0;b is required to vanish for any set of the

indices, p, p0, and b. This is a strong requirement
when combined with eq A21, and a ‘‘sufficient con-
dition’’ to meet this requirement is given by

Q
ð0Þ
3p�1;bQ

ð1Þ
3p0�1;b þQ

ð1Þ
3p�1;bQ

ð0Þ
3p0�1;b ¼ 0

for any p;p0 and b: (A23)

and X
a�1

~Q
ð0Þ
b;a

~Q
ð1Þ
b0;a þ ~Q

ð1Þ
b;a

~Q
ð0Þ
b0;a

	 

¼ 0

for any b and b0 (A24)

Combining eq A24 with eqs A16 and A17, we also
find

~Qð1Þ ¼ ½Qð1Þ�þ ðtranspose of Qð1ÞÞ (A25)

Note that eqs A23 and A24 are not identical to the
‘‘sufficient and necessary’’ condition. For example,
eq A24 does not need to hold for particular values

of p and b giving Q
ð0Þ
3p�1;b ¼ 0. However, for general

cases, eqs A23 and A24 appear to be close to the
‘‘sufficient and necessary’’ condition for the

requirement, h
ð1Þ
p;p0;b ¼ 0 for any p, p0, and b.

Considering eqs A16, A21, and A24, we can
express the O( _c2) term for hYp(t þ s)Xp0(s)is!1 as
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{2kBT/Nf}Rb�1h
ð2Þ
p;p0;b{k

ð0Þ
b }�1exp(�kð0Þb t), with the

coefficient h
ð2Þ
p;p0;b being given by

h
ð2Þ
p; p0;b ¼ Q

ð0Þ
3p�1;bQ

ð2Þ
3p0�2;b þQ

ð1Þ
3p�1;bQ

ð1Þ
3p0�2;b

þQ
ð2Þ
3p�1;bQ

ð0Þ
3p0�2;b þ

X
b0�1

2Q
ð0Þ
3p�1;bQ

ð0Þ
3p0�2;b0

1þ fkð0Þ
b0 =k

ð0Þ
b g

�
X
a�1

~Q
ð0Þ
b;a

~Q
ð2Þ
b0;a þ ~Q

ð1Þ
b;a

~Q
ð1Þ
b0;a þ ~Q

ð2Þ
b;a

~Q
ð0Þ
b0;a

	 
( )
(A26)

For the O( _c2) term to vanish, this h
ð2Þ
p;p0;b is

required to vanish for any set of the indices, p, p0,
and b. This is again a strong requirement when
combined with eqs A21 and A23, and the ‘‘suffi-
cient’’ condition for this requirement (close to the

‘‘sufficient and necessary’’ condition giving h
ð2Þ
p;p0;b

¼ 0 for general cases) is given by Q
ð0Þ
3p�1;bQ

ð2Þ
3p0�2;b þ

Q
ð1Þ
3p�1;bQ

ð1Þ
3p0�2;b þ Q

ð2Þ
3p�1;bQ

ð0Þ
3p0�2;b ¼ 0 (for any p, p0,

and b) andX
a�1

~Q
ð0Þ
b;a

~Q
ð2Þ
b0;a þ ~Q

ð1Þ
b;a

~Q
ð1Þ
b0;a þ ~Q

ð2Þ
b;a

~Q
ð0Þ
b0;a

	 

¼ 0

for any b and b0 (A27)

Combining eq A27 with eqs A16 and A18, we note

~Qð2Þ ¼ ½Qð2Þ�þ ðtranspose of Qð2ÞÞ (A28)

We now consider the expansion forms of the
unnormalized dielectric relaxation function and
the end-to-end vector autocorrelation function up

to O( _c2), Uun
ss (t; _c) ¼ Uun(0)(t) þ _cUunð1Þ

ss (t) þ
_c2Uunð2Þ

ss (t) and Wss(t; _c) ¼ W(0)(t) þ _cWð1Þ
ss (t) þ

_c2Wð2Þ
ss (t). From eqs A13–A16, the zero-th order

Uun(0)(t) and W(0)(t) (at equilibrium) are expressed
as

Uunð0ÞðtÞ ¼ 2~l2m
Nf

X
b�1

g
ð0Þ
b exp �kð0Þb t

	 

and

Wð0ÞðtÞ ¼ 2kBT

Nf

X
b�1

g
ð0Þ
b exp �kð0Þb t

	 

(A29a)

with

g
ð0Þ
b ¼ 1

kð0Þb

X
p�1

ðcos pp� 1ÞQð0Þ
3p�1;b

( )2

(A29b)

Namely, Uun(0)(t) ¼ {~l2m/kBT}W
(0)(t) at any t, and

these functions are rigorously proportional to

each other (which confirms the validity of Green-
Kubo theorem at equilibrium).

For Wss(t; _c), the first order expansion coeffi-

cient Wð1Þ
ss (t) vanishes because of eqs A23 and

A24. (Wss(t; _c) is identical to
RN
0 dndn0Syy(n, n

0, t)
and has the same symmetry as Syy(n, n

0, t) with
respect to _c, so that eqs A23 and A24 deduced
from the invariance of Syy(n, n

0, t) on inversion

of the shear direction automatically give Wð1Þ
ss (t)

¼ 0). For Uun
ss (t; _c), the first-order coefficient is

calculated from eqs A14 and A15 as Uunð1Þ
ss (t) ¼

{2~l2m/Nf}Rb�1g
½U�ð1Þ
b exp(�kð0Þb t) with the intensity

coefficient g
½U�ð1Þ
b being given by

g
½U�ð1Þ
b ¼ 1

kð0Þb

X
p;p0�1

ðcospp� 1Þðcos p0p� 1Þ

� Q
ð0Þ
3p�1;bQ

ð1Þ
3p0�1;b þQ

ð1Þ
3p�1;bQ

ð0Þ
3p0�1;b

	 

(A30)

(In derivation of eq A30, we have utilized eq A25.)

As seen from eq A23, this g
½U�ð1Þ
b vanishes and thus

Wð1Þ
ss (t) ¼ 0 at any t. Note also that g

½U�ð1Þ
b ¼ {2/

kð0Þb }{Rp�1(cos pp � 1)Q
ð0Þ
3p�1;b} � {Rp0�1(cos p0p �

1)Q
ð1Þ
3p0�1;b} and thus the relationship g

½U�ð1Þ
b ¼ 0 is

equivalent to a relationshipX
p0�1

ðcosp0p� 1ÞQð1Þ
3p0�1;b ¼ 0 for any b (A31)

Finally, considering eqs A16, A23, A24, A27, A28,
and eq A31, we can calculate the second order
coefficients for Wss(t; _c) and Uun

ss (t; _c) from eqs A13
and A14 as

Wð2Þ
ss ðtÞ ¼

2kBT

Nf

X
b�1

g
ð2Þ
b ðtÞ exp �kð0Þb t

	 

and

Uunð2Þ
ss ðtÞ ¼ 2~l2m

Nf

X
b�1

g
ð2Þ
b ðtÞ exp �kð0Þb t

	 

(A32a)

with

g
ð2Þ
b ¼ 2

kð0Þb

X
p�1

ðcospp� 1ÞQð0Þ
3p�1;b

( )

�
X
p0�1

ðcosp0p� 1ÞQð2Þ
3p0�1;b

( )
� 1

kð0Þb

kð2Þb

kð0Þb

þ kð2Þb t

8<
:

9=
;

�
X
p�1

ðcosp p� 1ÞQð0Þ
3p�1;b

( )2

(A32b)

Thus, Uunð2Þ
ss (t; _c) ¼ {~l2m/kBT}W

ð2Þ
ss (t; _c) at any t.
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From the above results, we find the validity of
the Green-Kubo theorem, Uun

ss (t; _c) ¼ {~l2m/
kBT}Wss(t; _c), up to the order of _c2. This conclu-
sion is based on the ‘‘sufficient’’ condition
deduced from the symmetries of Syx(n, n

0, t) and
Syy(n, n

0, t) with respect to _c under steady shear,
and we cannot rigorously rule out an anomalous
type of dynamics that allows the entangled poly-
mer chains to violate the Green-Kubo theorem
up to O( _c2). However, we expect that the entan-
glement dynamics is equivalent to the Rouse dy-
namics being modified due to the topological
constraint and this constraint does not severely
change the Rouse Hamiltonian. The Rouse
Hamiltonian ensures the validity of the Green-
Kubo theorem. Thus, the Green-Kubo theorem
quite possibly holds for actual entangled chains
under steady shear at least up to O( _c2).

APPENDIX C: FORMAL THEORY OF
LINEAR RESPONSE IN NONEQUILIBRIUM
STEADY STATE

Recently, formal theories of linear response
under specific nonequilibrium steady state con-
ditions have been developed on the basis of Lan-
gevin equation.20,21 These theories are mathe-
matically exact, but the current formulation is
applicable only to idealized, simple systems. For
realistic (and complicated) systems such as the
system of type-A polymer chains, it is difficult to
analyze quantitatively the linear response under
steady shear within the context of those formal
theories. Nevertheless, it is informative to uti-
lize the theories to compare qualitatively the
linear responses of idealized and realistic mate-
rials, colloidal particles driven by a constant
force along a circular orbit20,21 and type-A
chains under steady shear, thereby examining
the characteristic feature of the type-A chains.
This comparison is made below.

We first consider the colloidal particle on a
circular orbit driven by a constant force along
this orbit20,21: the particle position is measured
with a curvilinear coordinate x that has multiple
values according to the number of round travels
along the orbit. (x increases by the orbit length
Lo on each round trip of the particle in a positive
direction.) Utilizing this coordinate, we can
model the particle motion as one-dimensional
motion along an infinite axis (�1\ x\1). The
particle is subjected to the constant driving force
F0 ([0) as well as the Brownian force FB(t) hav-

ing the white noise character (hFB(t)FB(t0)i ¼
2fkBTd(t � t0) with f ¼ friction coefficient of the
particle) and a force due to a periodic potential
U(x) having the periodicity L (¼ L0/K with K ¼ a
positive integer). The Langevin equation for the
particle position x(t) is given by20

f _xðtÞ ¼ �dU xð Þ
dx

þ F0 þ FBðtÞ (A33)

It can be straightforwardly shown that a constant
probability current J0 emerges in the steady state
and thus the thermal equilibrium is not achieved
in this state. The velocity autocorrelation function
of the particle (related to the particle diffusion) is
calculated from eq A33, as explained below.

In general, a linear response function H of a
physical quantity A against a field conjugate to
a physical quantity B can be rigorously calcu-
lated with a standard method27 as

Hðt� sÞ ¼ b AðtÞ _BðsÞ
D E

ss
�b AðtÞ @B sð Þ

@x sð Þ t
� �

ss

(A34)

where b ¼ 1/kBT, t : J0/fss with fss being the
steady state probability distribution function, and
the subscript ‘‘ss’’ stands for the quantity in the
steady state in the absence of the field. The first
term in the right hand side of eq A34 is of the
usual Green-Kubo form and the second term gives
a nonequilibrium correction in the steady state.
The velocity autocorrelation function of the driven
particle is straightforwardly obtained by substi-
tuting A ¼ ẋ � hẋiss and B ¼ x in eq A34 as

Hðt� sÞ ¼ b _xðtÞ � _xh iss
� �

_xðsÞ � _xh iss
� �� �

ss

� b _xðtÞ � _xh iss
� �

t� _xh iss
� �� �

ss
(A35)

It has been shown that the second term (correc-
tion term) is not negligible compared to the first
term20,21 partly because the average hẋiss has a
nonzero value. In fact, the asymptotic form of the
second term at short times (t � s ! 0), obtained
after integration by parts, is expressed in terms of
the constant driving force F0, constant probability
current J0, and the potential periodicity L as20

�b _xðtÞ � _xh iss
� �

t� _xh iss
� �� �

ss
! �bF0J0Lþ _xh i2ss

þOðt� sÞ ffi �bF0J0L ðfor t� s ! 0Þ (A36)

As can be noted from eqs A35 and A36, the second
term has a large absolute value comparable to the
first term at short times,20 and both terms decay
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to zero at long times (t � s ! 1) to result in the
relaxation of the response function H. In other
words, the second term has a large contribution to
H at short times and thus this contribution sur-
vives in the whole process of the relaxation of H.
For this reason, the Green-Kubo theorem does not
hold for the particle driven by the constant force.
(It should be also noted that the Green-Kubo theo-
rem recovers its validity if the local velocity is
appropriately redefined.20 This validity is consist-
ent with the linear response theory of Evans et
al.17,19 for a thermostatted particle system under
steady shear.)

Now, we turn our attention to the system of
type-A chains under steady shear. The Langevin
equation for the position of n-th segment r(n, t)
(in the absence of the electric field) can be writ-
ten as

f _rðn; tÞ ¼ � @Uðfrðn; tÞgÞ
@rðn; tÞ þ fĊ � rðn; tÞ þ FBðn; tÞ

(A37)

Here, f is the segmental friction coefficient, U is
the interaction potential determined by the posi-
tions of all segments {r(n, t)}, Ċ is the shear rate
tensor (given by eq 7), and FB(n, t) is the Brown-
ian force acting on the nth segment at time t.
Note that the Langevin equation utilized in the
text (eq 6) is obtained by linearizing the first term
in the right hand side of eq A37 (and adding the
force due to the electric field).

The linear response function H of a physical
quantity A of the type-A chain system against a
field conjugate to a physical quantity B can be
formulated similarly to the one-dimensional
case (eq A34) as

Hðt� sÞ ¼ b AðtÞ _BðsÞ
D E

ss

� b AðtÞ
X
n

@BðsÞ
@rðn; sÞ � vðn; sÞ

* +
ss

(A38)

In eq A38, we have introduced, in analogy to the
one dimensional case, the local velocity v(n) :
J(n)/fss, where J(n) denotes the steady state prob-
ability flux at the position of the n-th segment
and fss is the steady state probability distribution
function. The rheodielectric response function of
the type-A chains defined in the shear gradient
direction is obtained by replacing both of A and B
in eq A38 by the end-to-end dipole in this direc-
tion, ~lRy:

Hðt� sÞ ¼ b~l2hRyðtÞ _RyðsÞiss

� b~l2 RyðtÞ
X
n

@Ry sð Þ
@r n; sð Þ � vðn; sÞ

* +
ss

(A39)

This H(t) is contributed from not only the Green-
Kubo term (first term in the right hand side) but
also the nonequilibrium correction term (second
term), which is formally similar to the case of
driven particle (eq A35). However, we also note a
quantitative difference between eqs. A39 and
A35. The asymptotic form of the correction term
in eq A39 at short times (t � s ! 0) is found to be

�b~l2 RyðtÞ
X
n

@Ry sð Þ
@r n; sð Þ � vðn; sÞ

* +
ss

!

� b~l2

2

X
n

@ Ry sð Þ� �2
@r n; sð Þ � vðn; sÞ

* +
ss

þ Oðt� sÞ

¼ Oðt� sÞ ! 0 ðfor t� s ! 0Þ (A40)

In derivation of eq A40, we have made integration

by parts and utilized a relationship
P

n
@Jðn;sÞ
@rðn;sÞ ¼ 0

(indicating the lack of divergence of the steady
state probability flux). As can be noted from eqs.
A39 and A40, at short times the Green-Kubo term
is much larger, in magnitude, compared with the
correction term (
0), and both term decays at
long times to result in the relaxation of the
response function H. Thus, the nonequilibrium
correction seems to have only minor contribution
to H of the type-A chains in the entire range of
time, although this correction may increase its
magnitude to have a somewhat larger contribu-
tion at intermediate times.

The above discussion suggests that the none-
quilibrium correction is minor for the rheodi-
electric relaxation function of the type-A chains
under steady shear. This result lends support to
the (approximate) validity of the Green-Kubo
theorem for the rheodielectric response of type-
A chains discussed in the text on the basis of
the linearized Langevin equation (eq 6). Of
course, the above analysis is approximate, and
it is strongly desired to develop a linear
response theory that enables a quantitative
analysis of the actual rheodielectric behavior of
type-A chains. At the same time, we believe
that the analysis presented in this paper has an
importance as the first attempt in the absence
of such a theory.
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Finally, it is informative to consider the ori-
gin(s) of the difference between the type-A
chains and the driven particle, the former satis-
factorily obeying while the latter violating the
Green-Kubo theorem. This difference may be
partly related a coupling incorporated in the
Langevin equation. Namely, the particle position
x, the quantity averaged in the response func-
tion H, is directly coupled with the driving force
F0 and frictional force fẋ in eq A33, while in eq
A37 the y component of the end-to-end vector Ry

of the type-A chain (averaged in H) is not
directly coupled with the frictional force due to
steady shear acting in the x direction. This dif-
ference could lead to the difference of the valid-
ity of the Green-Kubo theorem. (In fact, the
analysis based on eq A37 as well as eq 6 shows
that the theorem severely fails for the crosscor-
relation between Ry and Rx, the latter being
coupled directly with the frictional force due to
steady shear.) In addition, the average hẋiss for
the particle has a nonzero value while the aver-
age h _Ryiss for the type-A chains vanishes, which
may also contribute to the difference between
the particle and type-A chains.

APPENDIX D: NAPLES SIMULATION

Masubuchi et al.25 developed a method of
coarse-grained molecular simulation (NAPLES)
for entangled chains based on the primitive
chain network model. In this model, the net-
work is composed of Gaussian chains that are
pair-wise connected at temporary slip links
(that represent entanglements), and the chains
are allowed to slide along the array of slip links
according to a balance of forces acting on each
portion of the chains between slip links (this
portion is referred as a strand); the forces con-
sidered are the frictional force from a medium,
the elastic force due to the conformational en-
tropy of a strand, the Brownian force activating
diffusion, and the thermodynamic force reducing
any spatial gradient of segment density (a force
due to chemical potential). The segment number
in each strand is also allowed to fluctuate
according to a similar force balance. The slip
link fluctuates/moves in space following the
force balance for the strands. In addition, the
slip link penetrated by a strand at the chain
end is occasionally removed/created on decrease/
increase of the segment number in this strand
below/above critical values. Mathematical for-

mulation of these kinetic changes has been
explained elsewhere.25,28–30

Masubuchi et al.25,28–30 showed that the NA-
PLES simulation describes considerably well the
linear and nonlinear viscoelastic behavior of
entangled homopolymers including PI (and the
dielectric behavior of linear PI at equilibrium).
For PI under steady shear, they also conducted
a preliminary NAPLES simulation26 incorporat-
ing the so-called convective constraint release
(CCR)31 and hidden entanglement appearance
(HEA)32 mechanisms to calculate the rheodielec-
tric response. The CCR mechanism represents
the release of the entanglement for a given
chain due to retraction of surrounding chains
under fast shear (that is still slower than their
Rouse motion), and the HEA mechanism consid-
ers that a chain that was neighboring to but not
entangled with the given chain before occur-
rence of CCR is hooked by that chain after CCR.
In the rheodielectric simulation, Masubuchi et
al.26 put positive and negative charges at re-
spective ends of the entangled linear chains and
directly evaluated, by monitoring the spatial
distribution of these charges, the macroscopic
polarization Pss(t) induced by a weak electric
field E. These charges are equivalent to a sum
of type-A dipoles of the chain. Thus, the simula-
tion well mimicked the actual rheodielectric
experiments for PI under steady shear. In the
simulation, the macroscopic dielectric relaxation
function directly obtained from this Pss(t) well
agreed with the correlation function of the end-
to-end vector Ry in the shear gradient direc-
tion,26 lending support to eqs 14a and 14b in
the text.

In this study, we have again conducted the
NAPLES simulation (with the CCR and HEA
mechanisms) for the rheodielectric behavior of
entangled PI under steady shear as well as
LAOS. Among several versions of NAPLES with
minor differences, the simulation was performed
with the code used in recent studies showing
quantitative prediction of linear28–30 and nonlin-
ear30 viscoelastic behavior. The CCR and HEA
mechanisms were incorporated in the simula-
tion, and the HEA parameter lc

2, specifying a
spatial range where the entanglement can be
created, was set at 2.0, as done in the previous
study.26

The simulation was made for monodisperse
linear chains each having 9.6 entanglement seg-
ments on average at equilibrium. The simula-
tion box size and segment density were (16a)3
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and 10a�3, respectively, with a being an average
length of entanglement segment. This box was
subjected to steady shear and/or LAOS, both
being generated with SLLOD and Lees-Edwards
boundary condition. The steady shear rate as
well as the LAOS frequency and amplitude in
the simulation mimicked the actual experimen-
tal conditions.7,11 For each chain in the box, a
positive charge ~l was attached to one end, and
a negative charge �~l to the other end. (These
charges are equivalent to the type-A dipoles
summed along the chain backbone.) The chains
under steady shear or LAOS were also subjected
to a small oscillatory electric field (E(t) ¼ E0sin
xt) in the shear gradient direction. The result-
ing, macroscopic polarization P(t) was directly
evaluated from the spatial distribution of the
chain ends, and the dielectric loss was calcu-
lated from this P(t). The end-to-end vector corre-
lation function and the mean-square end-to-end
distance hR2

yiLAOS, respectively, were also eval-
uated under steady shear and LAOS. The simu-
lated results are shown in Figures 1–3 in this
paper. Although the simulated dependence of
the terminal dielectric relaxation time se on the
steady shear rate/LAOS amplitude is stronger
than the experimental observation, the general
trends of the rheodielectric behavior are well
captured by the simulation; see Figures 1–3.
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