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Abstract
Structural relaxation times and viscosities for non-associated liquids and
polymers are a unique function of the product of temperature, T , times specific
volume, V , with the latter raised to a constant, γτ . Similarly, for both neat
o-terphenyl (OTP) and a mixture, the entropy for different T and pressure,
P , collapses to a single curve when expressed versus T V γS , with the scaling
exponent for the entropy essentially equal to the thermodynamic Grüneisen
parameter. Since the entropy includes contributions from motions such as
vibrations and secondary relaxations, which do not affect structural relaxation,
γS < γτ . We show herein that removal of these contributions gives a satisfactory
account of the magnitude of γτ . Moreover, the relaxation times of OTP are
found to be uniquely defined by the entropy, after subtraction from the latter of
a V -independent component.

1. Introduction

Understanding the origin of the dramatic change in the dynamics of liquids and polymers as
the glass transition is approached from the equilibrium state remains a central issue in soft
condensed matter, notwithstanding more than 50 years of research. Various interpretations
have been proposed, based variously on configurational entropy, energy landscapes and free
volume; however, no consensus has emerged. The problem remains unsolved, in part due to the
diversity of glass-forming materials and the wealth of experimental data that must be addressed.
One significant recent finding is that relaxation times measured under different conditions of T
and P superpose to form a single curve when plotted versus T V γτ [1, 2]; that is

τ = f (T V γτ ) (1)

where f represents an unknown function, V is the specific volume, and γτ is a material
constant. The motivation for equation (1) derives from simulations by Hansen and co-
workers [3, 4] on a Lennard-Jones 6-12 fluid showing that the glass transition occurs at a
constant value of TgV 4

g . Subsequently, from NMR measurements Hollander and Prins [5]

0953-8984/07/205118+08$30.00 © 2007 IOP Publishing Ltd Printed in the UK 1

Downloaded from http://polymerphysics.netDownloaded from http://polymerphysics.net

http://dx.doi.org/10.1088/0953-8984/19/20/205118
http://stacks.iop.org/JPhysCM/19/205118


J. Phys.: Condens. Matter 19 (2007) 205118 C M Roland and R Casalini

found that TgV 2
g is a constant for polypropylene, while Tölle et al [6] obtained a similar result

for the crossover temperature of mode coupling theory in o-terphenyl (OTP) with the exponent
equal to 4. These results indicate that a characteristic temperature associated with a given
value of the relaxation time occurs at a fixed structure factor. Generalizing this result to any
relaxation time [1] leads to equation (1), whose validity has now been demonstrated for more
than 50 liquids, including results from dielectric spectroscopy [1, 7–12], neutron [13] and light
scattering [14, 15], viscosity measurements [14, 16] and simulations [17, 18]. Equation (1) has
also been found to be valid for the normal mode in polymers [19, 20] and for the component
dynamics in polymer blends [21, 22] (although a problem in analysing blend dynamics is
uncertainty in the relationship between component volume and the total volume). A breakdown
of the scaling can be expected wherever the material itself changes (chemically) with T or P—
an example being strongly hydrogen bonded materials such as water and glycols [16].

The idea underlying equation (1) is that for local properties the intermolecular potential
can be represented by a two-body repulsive power law [23–25]

U(r) ∼ r−3n (2)

where r is the intermolecular separation and n a constant related to the steepness of the
potential. To the extent that equation (2) is accurate, thermodynamic properties in general will
depend only on the scaled variable T V n [23, 24]. This scaling breaks down for the equation
of state, due to neglect of the longer range attractions [26]. However, we have shown for
three glass-forming materials, propylene carbonate, salol and polyvinylacetate (PVAc), that the
entropy is well represented by [27]

S = f (T V γS) (3)

with the scaling exponent numerically equal to the Grüneisen parameter, γG. This result,
γS = γG, can be derived from equation (2) [26] or from thermodynamics using

γG = V αP

CV κT
(4)

where αP is the isobaric thermal expansivity, κT the isothermal compressibility and CV the
isochoric heat capacity. If γG is independent of V (or equivalently ∂ P

∂T |V ∝ 1
V [28]) it follows

that the entropy is

S(T, V ) = CV ln(T V γG) + Sref. (5)

The condition T V γG = const corresponds to an adiabatic transformation reminiscent of an
ideal gas. Interestingly, the scaling exponent for the relaxation times, γτ , is about threefold
larger than γS [27].

In this paper we test equation (3) for a prototypical liquid, OTP, and for a mixture of
OTP with o-phenyl phenol (OPP). This mixture has a substantially larger value of γτ than
OTP [29], and as we show herein, the scaling exponent for the entropy is correspondingly
larger. We also examine a means to correct the Grüneisen parameter for contributions from
motions not involved in structural relaxation, whereby consistency between γτ and γG (and
thus γS) is achieved.

2. Results

2.1. OTP

Quasielastic neutron scattering [13], transverse Brillouin dynamic light scattering [14] and
viscosity measurements [14] all indicate a value of γτ = 4.0 for OTP, consistent with n = 4
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Figure 1. Scaled plot of the total entropy minus the entropy at the ambient pressure Tg for OTP (five
isotherms and one isobar). The inset shows the same data versus specific volume. The entropies
were calculated at P = 0.1 MPa from the heat capacity [31] and at higher pressures from the
equation of state [32] using equation (6).

in equation (2) [30]. (The reported value for dielectric relaxation times is slightly larger,
γτ = 4.25 [14].) To evaluate the dependence of the entropy on T and V , we calculate S
using

S(T, P) = Sref(Tref, P = 0) +
∫ T

Tref

CP

T
dT −

∫ P

0

∂V

∂T

∣∣∣∣
P

dP (6)

where CP is the isobaric heat capacity and Sref the entropy at a reference temperature Tref

and P = 0. Thus we determine S(T, 0) − Sref at zero pressure using the atmospheric heat
capacity data for OTP reported by Chang and Bestul [31]. The results are shown as a function
of volume over the range from Tg ∼ 247 K to T = 355 K in the inset to figure 1. Using the
reported equation of state data for OTP [32], we evaluate the third term in equation (6) for five
temperatures spanning this range, with the obtained values of S(T, P) − Sref included in the
inset.

Next we replot these data as a function of T V γS with the exponent adjusted to give
collapse of the S(T, P) − Sref onto a single master curve. Superpositioning is achieved for
γS = 1.2, which is substantially smaller than the value of 4 for γτ . We compare this exponent
to γG, based on the connection between these quantities (equation (5)) [26, 28]. Whereas the
scaling exponent γS is constant, γG is a strong function of temperature close to 0 K and well
below Tg; however, at higher temperature it becomes approximately constant [33, 34]. The
thermodynamic Grüneisen parameter is defined in equation (4) [33], with the isochoric heat
capacity obtained from CP using the thermodynamic relation

CV = CP − T V α2
P

κT
. (7)

The result is γG = 1.2 for OTP at Tg and zero pressure, in agreement with the scaling exponent
for the entropy.
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Figure 2. Scaled plot of the total entropy minus the entropy at the ambient pressure Tg for a 2:1
mixture of OTP and OPP (two isobars). The inset shows the same data versus specific volume. The
entropies were calculated from the heat capacity at the two pressures as reported in [35].

2.2. OTP/OPP

Dielectric relaxation times for a mixture of OTP and OPP (2:1 weight ratio) were found to
scale for a value of the exponent γτ = 6.2 [29]. Takahara et al [35] reported heat capacity,
thermal expansivity and compressibility measurements at both ambient and P = 28.8 MPa for
this same mixture, enabling the entropy to be determined directly for these two pressures. The
results are shown in the inset of figure 2. (Note that both data sets are isobars, whereas figure 1
for OTP shows an isobar and five isotherms.) When replotted versus T V 1.6, the data collapse
to a single curve. The entropy scaling exponent is smaller by a factor of almost 4 than γτ . From
equation (4) the Grüneisen parameter for the mixture is calculated to be 1.30 at Tg, close to the
value of γS for the mixture.

2.3. Excess contributions to γG and S

The superpositioning of the entropy for the two materials supports identification of the scaling
exponent γS with the Grüneisen parameter; however, for both liquids γS is three to four times
smaller than the scaling exponent for the relaxation times. This difference is due to the
contribution to the entropy from motions not involved in structural relaxation, i.e. vibrations and
local secondary processes. This is a problem common to assessments of configurational entropy
models of the glass transition [36–39]. The configurational entropy is usually unavailable, so
the total entropy is used after subtraction of the crystal entropy. This subtraction assumes
equivalent T and P dependences for the excess contributions to the total and the crystal
entropies, with the expectation that the resulting ‘excess’ entropy is at least proportional to
the configurational entropy [40, 41].

We have recently proposed a different approach to determine the configurational entropy,
Sc, from the total entropy, which obviates the need to subtract the crystal entropy [27].
The small value of the scaling exponent for the entropy connotes a relatively weak volume
dependence; thus, to a first approximation that portion of the entropy not involved in structural
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Figure 3. OTP relaxation times [42] versus the total entropy minus the contribution from motions
not involved in structural relaxation (symbols as in figure 1). This contribution, S0, was taken to
equal the value of the entropy at Tg(P) (with S0(T ) assumed to be volume independent). The top
inset compares S–S0 and S–Sref (with Sref a constant equal to S (Tg, 0.1 MPa)). The lower inset
shows the linear dependence of S0–Sref on T (parameters given in the text).

relaxation (which we designate S0) can be taken to have a negligible dependence on V ; that is,
S0(T, V ) ∼ S0(T ). This implies that for constant τ , and presumably constant configurational
entropy, S0 ∼ S(Tg) (where Tg is the temperature corresponding to a fixed value of τ ). For
salol and PVAc it has indeed been shown that their respective τ (T, V ) are essentially a single
function of S(T, V ) − S0(T ), with the latter defined as described herein [27].

We test this idea for OTP using the dielectric relaxation times reported by Naoki and co-
workers [42], who measured τ over the range 257 < T (K) < 290 for P from ambient to
79 MPa. Their data were well described by a generalized Vogel–Fulcher equation having the
form [42]

τ = 8.907 × 10−22 exp

(
3779 + 3.43P

T − 170 − 0.19P

)
. (8)

Using this equation, the T and P for which τ = 1s were determined and the corresponding
values of S(τ = 1s) − Sref (=S0 − Sref) were obtained (lower inset to figure 3). The data
exhibit a linear temperature dependence, S0 − Sref = −207.1 ± 0.3 + (0.84 ± 0.001)T . The
configurational entropy, Sc = S − S0 is then obtained by subtracting from S − Sref the linear
fit of S0 − Sref (solid symbols in the upper inset to figure 3). In the main part of figure 3,
the relaxation times for OTP are plotted versus S − S0. It can be seen that the τ for different
thermodynamic conditions (varying T at constant P or varying P at constant T ) fall on a single
curve; that is, the relaxation times are uniquely defined by the entropy, after subtraction of the
V -independent component of S.

This approach is equivalent to considering that in the liquid state during an isothermal
compression or expansion, the entropy change is purely configurational; that is, the unoccupied
or ‘free’ volume has to be removed before vibrational or local intramolecular motions are
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Table 1. Scaling exponents and Grüneisen parameters.

γτ γS γG γ exc
G

OTP 4.0 [13, 14] 1.2 1.2 3.7
OTP/OPP 6.2 [29] 1.6 1.3 6.9a

Salol 5.2 [1] 1.7 [27] 1.9 [28] 6.2

a Glass values used since there is no crystalline state.

affected. Thus,

∂Sc

∂V

∣∣∣∣
T

= ∂Sliq

∂V

∣∣∣∣
T

− ∂S0

∂V

∣∣∣∣
T

≈ ∂Sliq

∂V

∣∣∣∣
T

. (9)

We therefore calculate Sc as the entropy in excess to the glass, starting from the differential
form

dSc =
(

∂Sliq

∂T

∣∣∣∣
V

− ∂S0

∂T

∣∣∣∣
V

)
dT +

(
∂Sliq

∂V

∣∣∣∣
T

)
dV = �CV

T
dT + ∂ P

∂T

∣∣∣∣
liq

V

dV (10)

where we have used equation (9) together with one of the Maxwell relations, with �CV =
C liq

V − Cxtal
V . Defining an ‘excess’ Grüneisen parameter γ exc

G as

γ exc
G = V α

liq
P

�CV κ
liq
T

(11)

equation (10) can be rewritten as

dSc = �CV

(
dT

T
+ γ exc

G

dV

V

)
. (12)

Integration of equation (12) requires two assumptions, both of which add negligible error:
(i) γ exc

G is independent of V . Although strictly speaking the Grüneisen parameter and γ exc
G

are weakly dependent on volume, previously we showed for other liquids that the change is
less than 5% over the supercooled range [28]. (ii) �CV is independent of T . Calculating
CV for OTP using equation (7) and the data of Change and Bestul [31] and Naoki [32], we
find that from 303 to 247 K, the isochoric heat capacity changes by less than 1.3%. Thus,
these assumptions are verified and equation (12) is integrated, yielding an expression similar to
equation (5)

Sc = �CV ln(T V γ exc
G ) + const. (13)

Therefore Sc should scale when plotted as a function of the variable T V γ exc
G . In table 1 we list

the value of γ exc
G calculated according to equation (11) (using crystal data for OTP from [31]

and [32]). The result is only 7% smaller than γτ , whereas there is a factor of 3.3 difference
between γG and γτ .

We cannot extend this exact procedure to the OTP/OPP mixture because it does not
crystallize (indeed, OPP is added in order to suppress crystallization of the OTP). Therefore,
instead we calculate the excess heat capacity with respect to the glass rather than the crystal.
The result is γ exc

G = 6.9, which is only 10% larger than γτ .
The requisite data for this calculation are also available for salol. Previously it was found

that the Grüneisen parameter defined by equation (4), while essentially equal to γS, was about
threefold smaller than the scaling exponent for the relaxation times of salol [27]. Using crystal
data from [43], equation (11) gives for the excess Grüneisen parameter, γ exc

G = 6.2, which
compares favourably to the scaling exponent for the relaxation times, γτ = 5.2 [1].
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3. Conclusions

We have shown herein that the total entropy of both OTP and its mixture with OPP is a
function of T V γS with γS ∼ γG. The values of γS for the two liquids differ substantially
from the respective scaling exponents for the relaxation times γτ . This difference is due to the
additional contributions to the entropy, S0, from vibrations and secondary processes. For OTP
and salol, we carry out a correction to the Grüneisen parameter, using values of the expansivity,
compressibility and heat capacity of the crystalline state, while for OTP/OPP we use values for
the glassy state. The obtained γ exc

G are in quite good agreement with the reported values for γτ .
A method is also illustrated to correct the entropy for the excess contribution by assuming

that S0 has a negligible dependence on V , whereby S0(T ) ∼ S(Tg) with the latter obtained from
measurements at elevated pressure. It can then be shown that τ for OTP depends only on S−S0,
a result previously found for salol and PVAc [27]. This in turn means that S − S0 conforms to
equation (1) with the same exponent γτ . These results affirm that the thermodynamic scaling
of the relaxation times (equation (1)) has an entropic origin, supporting the idea that models of
the supercooled dynamics of liquids should be based on the configurational entropy.
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