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The role of the intermolecular interaction potential on the dynamic and thermodynamic properties of model
glass-forming mixtures is investigated through molecular dynamics simulations. Variations of the repulsive
exponent m in the well-studied Lennard-Jones Kob-Andersen mixture are shown to have a negligible effect
on the fragility and dynamic correlation volumes when quenches are performed at constant pressure. The
number of dynamically correlated particles, estimated from the temperature derivative of a two-point
dynamic correlation function, is approximately invariant to m at any fixed relaxation time. Further, the
density scaling property of a model tetrahedral network glass-former, based on inverse power law and
Lennard-Jones potentials, is investigated. The optimal scaling exponent γ is close to zero and does not
superpose the data well. The breakdown of density scaling is consistent with the absence of correlation
between fluctuations of the virial and the potential energy. These results emphasize the crucial role of
structural many-body correlations in glass-forming systems and show the need of investigations of more
complex and realistic model liquids.
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1. Introduction

The divergence in their properties as liquids approach vitrification
is among the most fascinating phenomena of the physical world. A
one degree change in temperature can alter structural relaxation
times by decades, corresponding to activation energies two or more
orders of magnitude larger than van der Waals bond energies.
Although a predictive, first-principles theory of the glass transition
remains elusive, much progress has been made in understanding the
relaxation behavior. Recent progress has drawn on the pioneering
work of Hoover and Ross [1], who showed that when the
intermolecular potential is a repulsive inverse power law (IPL),

u rð Þ∼r−m ð1Þ

where r is the particle separation and m is a constant, excess
thermodynamic properties are uniquely determined by the quantity
ργ /T, where ρ is density, T is temperature, and γ is a material constant.
Subsequently, molecular dynamics (MD) simulations showed this
scaling property to apply to diffusion constants of Lennard-Jones (LJ)
particles [2]. In consideration of the “local” nature of reorientational
motions in supercooled liquids, in which intermolecular distances are
limited primarily to the repulsive range of r, the scaling was extended
to real materials [3,4], and for non-associated, organic liquids and
polymers the dynamics in the viscous regime indeed conform to a
scaling relation, τ∼ f(ργ /T) (see [5] and references therein). Recently,
MD simulations affirmed the putative connection between this scaling
property and the intermolecular potential; specifically, the value of γ
superposing diffusion constants or relaxation times was found to be
equal to the effective slope of the repulsive part of u(r) in the vicinity
of its minimum [6]. However, this slope is larger thanm in Eq. (1) due
to the influence of the attractive term (its decay with decreasing r
causes the potential to be steeper than the bare repulsive term).

The scaling relation describes the effect of thermodynamic
variables on macroscopic observables (diffusion constant, relaxation
time, viscosity), but of course supercooled liquids are in dynamic
equilibrium, characterized by thermal fluctuations about these mean
values. Pedersen et al. [7] discovered that for many simulated liquids,
such fluctuations in the potential energy and the virial are linearly
correlated, with a proportionality constant numerically equal to the
scaling exponent γ. For a strict IPL material, the correlation is exact;
for real liquids or LJ particles, the correlation of U and W supports the
IPL with an added linear term as a reasonable approximation to the
interaction potential [8]. However, the existence of this correlation is
not a sufficient condition to guarantee conformance to the scaling
relation [9]. Gnan et al. [10] have coined the term “isomorph” to
describe thermodynamic pathways along which properties of a liquid
remain constant; an operative definition is pathways defined by
constancy of ργ /T, where γ can be estimated from equilibrium U–W
fluctuations.

Thermal fluctuations are central to the supercooled behavior of
liquids. In the ultra-viscous state the dynamics is inherently
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Fig. 1. Pair potential u11(r) (Eq. (2)) for different values of m. The small discrepancies
between the values at the minimum are due to the smooth cut-off employed.
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heterogeneous, with many theories of the glass transition positing a
growing length scale of dynamic correlations as the origin of
vitrification. We recently showed both from MD simulations [9] and
experimentally [11] that the number of particles (molecules) within a
correlation volume, Nc, is determined by the relaxation time. Since the
latter is a function of ργ /T, this means that Nc follows the same scaling
relation, Nc=g(ργ /T). The question arises: what aspects of the
intermolecular potential are related to dynamic heterogeneity? This
is an important issue, potentially revealing how molecular structure
governs the dynamic correlations and hence the magnitude of τ.

One reflection of dynamic heterogeneity is the distribution of
structural and reorientational relaxation times, whose mean value is
τ. This distribution can be characterized by the stretching exponent,
βK, in the Kolhrausch function used to describe the shape of the
relaxation function. Smaller βK implies a broader distribution and
ostensibly a more heterogeneous dynamics. Interestingly, at any
given value of τ, βK is fixed [12]; moreover, since βK is linearly
correlated with the fragility, i.e., dlog(τ) /d(Tg /T) evaluated at T=Tg
[13], it is tempting to posit a mutual correlation of Nc with both βK

and fragility. Since these quantities are all connected to the scaling
relation [12–14], the possibility exists to interpret these properties
in terms of the forces between molecules, given the connection of
the scaling exponent γ to the intermolecular potential [6,15].
However, prior studies are inconclusive. De Michele et al. [16] found
that for particles interacting according to an IPL, the fragility was
unaffected by the value of m (Eq. (1)). On the other hand, Bordat et
al. [17] included an attractive term in the pair potential and found
that fragility increased with the anharmonicity of the potential
energy. The uncertainty of these studies carries over to efforts to
correlate the nonergodicity factor in the low temperature limit, and
hence the curvature of the minimum in the potential for the glass,
with a liquid's fragility [18,19].

In this work we study the dynamics of modified LJ mixtures with
pair potentials [17]

uαβ rð Þ = Eαβ

m−6
6

rαβ

r

� �m

−m
rαβ

r

� �6� �
ð2Þ

where α and β are species indices, rαβ and Eαβ are material-specific
interaction parameters, and the repulsive exponent m was varied as
8 ≤ m ≤ 36. From simulations at constant pressure (mimicking the
common experimental protocol), we find that the steepness of uαβ(r)
has practically no effect on either the isobaric fragility or the
stretching exponent, and that Nc at any fixed τ is also independent
ofm. Previously, conformance to scaling and the properties that ensue
therefrom has been found primarily for non-associated organic
molecules. We include herein MD results for a tetrahedral network
glass. Notwithstanding that the force-field is based on IPL and LJ
potentials, this system exhibits a breakdown of ργ /T scaling and
accordingly an absence of correlation between the potential energy
and the virial. These results agree with earlier work of Le Grand et al.
[20] on simulated silica, and emphasize the intimate connection
between structural correlations and dynamic scaling behavior.

2. Results

In the following we will initially focus on molecular dynamics
simulations of a modified version of the well-known Kob-Andersen
Lennard-Jones mixture [21] based on Eq. (2). The systems studied
herein are composed ofN=N1+N2=1000 particles in a cubic cell with
periodic boundary conditions. Inour simulations the repulsiveexponent
m is varied for all pairs α−β, maintaining the same ratios rαβ/r11 and
Eαβ/E11 as in the original model. A smooth cut-off scheme [22] is
employed to ensure continuity up to the first derivative of the potential
at the cut-off rc=2.5×21/6rαβ. Standard reduced Lennard-Jones units
are used throughout [23]. The pair potentials u11(r) for the different m
are plotted in Fig. 1. Increasing m not only affects the steepness of the
potential but also increases the “coupling” [17], i.e., the inverse width of
uαβ(r). The effect of a similar variation of u11(r) has been studied in [17]
for amodified Kob-Andersenmixture at constant density. However, the
simulations reported herein were carried out at constant pressure,
P=10, by coupling the system to a Berendsen thermostat and a
Berendsen barostat during equilibration. Production runs were per-
formed using the Nose-Poincare thermostat [24]. Equilibration criteria
were similar to the ones used in previous simulations of Lennard-Jones
mixtures [25,26]. To improve the statistics and to average out small
discrepancies in the actual pressure, three independent realizations
were considered.

In Fig. 2 we show the density of the system as a function of
temperature for varying m. The density shifts systematically to
smaller values as m is increased at constant pressure. That is, as m
increases at fixed temperature, smaller densities are enforced to
achieve the same pressure value, due to the increased coupling of the
potential. This suggests a different role of thermal activation and
jammed dynamics when varying m.

Arrhenius plots of the isobaric relaxation times, defined from the
decay to 1/e of the self-intermediate scattering function

Fs k; tð Þ = 1
N

∑
N

j=1
hexp ik⋅ rj tð Þ−rj 0ð Þ

h in o
i ð3Þ

are shown in Fig. 3 (upper panel) for these systems. Following
previous work [17], we evaluate Fs(k, t) at a wave-vector k⁎=2π / r⁎,
where r⁎ is the position of the first peak in the radial distribution
function g11(r). At any given temperature there is a systematic
increase in τ with increasing steepness of the repulsive potential;
however, when plotted versus the TO-normalized temperature, where
TO is the characteristic temperature at which relaxation departs from
single exponential decay [27], the data collapse to essentially a single
curve (lower panel of Fig. 3). A close inspection of the T-dependence
of the relaxation times suggests a slight increase of fragility by
increasing m, although the present data do not allow drawing a firm
conclusion. Thus, the isobaric fragility of the systems is essentially
independent on the steepness of the potential, when comparisons are
made at constant well depth. A comparison with the results of Bordat
et al. [17] indicates, therefore, that the effect of the intermolecular
potential on dynamical properties may depend on the conditions—
isochoric or isobaric—under which a liquid is quenched. Finally, in
accord with the well-established correlation of fragility with the
stretching of the relaxation function, the exponent βK obtained from
stretched exponential fits to the self-intermediate scattering functions
also superpose as a function of TO /T (data not shown).



1.0

1.1

1.2

1.3

1.4

0.4 0.6 0.8 1.0 1.2 1.4 1.6
T

P = 10

m = 8
m = 12
m = 24
m = 36

ρ

Fig. 2. Density ρ as a function of temperature T for different values of m at constant
pressure P=10.

Fig. 4. Lower bound to Ncorr (Eq. (5)) as a function of relaxation times τ for different
values of m. The wave-vector at which χT is evaluated is the same as in Fig. 3.
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The spatial extent of the correlation of the motions in viscous
liquids over a time-span t is described by the four-point dynamic
susceptibility

χ4 tð Þ = N b f 2s k; tð ÞN −F2s k; tð Þ
h i

ð4Þ

having a maximum value, χ4
max, equal to Nc. In Eq. (4) fs(k, t) is the

instantaneous value of the self-intermediate scattering function,
whose time average is b fs(k, t)N=Fs(k, t). Previously we calculated
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Fig. 3. Arrhenius plots of relaxation times τ from the self-intermediate scattering
function Fs(k=k⁎, t). The wave-vector k⁎ is chosen such that k⁎=2π / r⁎, where r⁎ is the
position of the first peak in the radial distribution function g11(r): the corresponding
values of k⁎ are 6.2 (m=8), 6.0 (m=12), 5.8 (m=24), and 5.7 (m=36). Results are
shown for isobaric quenches at P=10. Upper panel: τ versus 1/T. Lower panel: τ versus
TO /T, where TO is the onset temperature of non-exponential relaxation of Fs(k⁎, t). The
values of TO are 0.70 (m=8), 0.80 (m=12), 0.94 (m=24), and 0.99 (m=36).
χ4 for LJ particles with m=12 [9]. As shown by Berthier and
coworkers [28], however, the four-point dynamic susceptibility can be
approximated by the temperature derivative of a two-point dynamic
correlation function

χ4 tð Þ≥ T2

cP
χ2
T tð Þ = T2

cP

∂Φ tð Þ
∂T

� �2

ð5Þ

where Φ(t) is a two-point, time-dependent correlation function and
cP the isobaric heat capacity. In the following, we use Φ(t)=Fs(k⁎, t)
and consider the variation of the maximum of χT as a function of
temperature, as in recent studies [11,28–30].

In prior work we found that Nc for a given material (defined in
simulations by a particular value of m) depends only on the
magnitude of τ, independent of T or ρ [9]. Moreover, experimental
Nc for differentmaterials collapse onto a single curve at shorter values
of the relaxation times (τb10−8s) [11]; however, with decreasing T
(or increasing ρ) these Nc show substantial differences for different
materials compared at fixed τ. In Fig. 4 we plot the χT approximation
of Nc (Eq. (5)) for particles of species 1 in the Kob-Andersen mixture
with varying m. There is only a small increase of roughly 30% in Nc at
fixed τ as m increases from 8 to 36. This change is on the order of the
scatter in the calculations and thus barely significant. Preliminary
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results for an additive, symmetric mixture confirm the insensitivity of
Nc to m at constant pressure.

Finally, we consider a simplemodel of a network glass-former [31],
in which particles interact through the potential

uαα rð Þ = 4�αα
σαα

r

� �12 ð6Þ

uαβ rð Þ = 4�αβ
σαβ

r

� �12
−

σαβ

r

� �6� �
; α≠β ð7Þ

where α, β=1, 2 are indexes of species. The optimal non-additive
parameters that reproduce a tetrahedral network structure for a
reduced density ρ≈1.65 (close to the experimental density of silica)
and the details of the simulations can be found in [31]. The force-field
is based on IPL and LJ potentials and thus it might be expected that
this network glass will inherit general properties associated with IPL-
like potentials, e.g. density scaling and U–W correlations. In Fig. 5 the
diffusion coefficient of particles of species 1 during isochoric quenches
are plotted as a function of ργ /T. The optimal value of this scaling
variable, γ∼0, is unphysical in view of a generalized IPL approxima-
tion [8] and moreover there are systematic (albeit small) deviations
from superpositioning of the data. The breakdown of the ργ /T scaling
is accompanied by a striking lack of correlation between the
(normalized) fluctuations of W and U. This is exemplified in the
inset of Fig. 5 for a selected state point at low temperature, at which
the liquid displays a nearly ideal tetrahedral network structure
(ρ=1.655, T=0.29). More generally, the estimated Pearson correla-
tion coefficient R remains below 0.1 over thewhole investigated range
of state parameters.

The absence of U–W correlations is elucidated in Fig. 6, where we
show, for the same selected state point considered above, the partial,
species-dependent contributions ΔWαβ and ΔUαβ to virial and
potential energy fluctuations, respectively. Contributions arising
from u11(r) (and u22(r), not shown) show perfect correlation, as
expected for IPL potentials. In contrast, no correlation is found for the
1–2 pairs, whose interaction is described by a simple LJ potential. Thus
our results emphasize how U–W correlations are indeed a necessary
condition in order for density scaling to apply and that such
correlations may arise, in general, from non-trivial many-body effects.

3. Conclusion

Previously it was known both from simulations and experiments
that the fragility, Kohlrausch exponent, and the number of dynamic
correlating molecules are constant at a fixed value of the relaxation
time for a given material. Herein we determined that for different
model glass-forming systems, defined by the exponent of the
repulsive term in their respective pair potentials, this constancy of
the fragility, βK, and Nc at fixed τ under isobaric conditions is
maintained to a good approximation. Moreover, these quantities are
invariant to the value of the repulsive exponent; thus, the variations in
these properties seen among different real materials have their origin
in other aspects of the intermolecular potentials, with the many-body
character of interparticle distances and forces having a role in the
heterogeneous dynamics.
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