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We present numerical calculations of a four-point dynamic susceptibility, �4�t�, for the Kob–
Andersen Lennard-Jones mixture as a function of temperature T and density �. Over a relevant
range of T and �, the full t-dependence of �4�t� and thus the maximum in �4�t�, which is
proportional to the dynamic correlation volume, are invariant for state points for which the scaling
variable �� /T is constant. The value of the material constant � is the same as that which superposes
the relaxation time � of the system versus �� /T. Thus, the dynamic correlation volume is a unique
function of � for any thermodynamic condition in the regime where density scaling holds. Finally,
we examine the conditions under which the density scaling properties are related to the existence of
strong correlations between pressure and energy fluctuations. © 2009 American Institute of Physics.
�doi:10.1063/1.3250938�

During the past decade extensive evidence has accumu-
lated that the dynamics of molecules in supercooled highly
viscous liquids is inherently heterogeneous;1–3 that is, spatial
variations in mobility persist for times commensurate with
the structural relaxation time �. Thus, there is growing inter-
est in characterizing the dynamic heterogeneities to better
understand the phenomena associated with the many-body
dynamics of vitrifying liquids. These phenomena include
rotational-translational decoupling,4,5 the dynamic
crossover,6,7 enhanced mobility under confinement,8 nonex-
ponentiality of the relaxation,9 and, most prominently, the
slowing down of the translational and rotational dynamics
upon approach to the glass transition temperature Tg. To ex-
plain these features, theories of the glass transition as diverse
as the classical Adam–Gibbs entropy10 and Cohen–Grest free
volume11 models, as well as more modern approaches,12,13

invoke dynamic heterogeneity having a length scale that
grows in concert with � upon drawing near to Tg.

A proper description of the dynamic heterogeneities re-
quires multipoint dynamic susceptibilities, which reflect cor-
relations in the spatial variation of the dynamics. A four-
point dynamic susceptibility �4�t� can be calculated as the
variance of the self-intermediate scattering function Fs�k , t�

�4�t� = N��fs
2�k,t�� − Fs

2�k,t�� , �1�

where fs�k , t� is the instantaneous value such that �fs�k , t��
=Fs�k , t�. �4�t� quantifies the amplitude of the fluctuations
associated with fs�k , t� and has a maximum, �4

max=�4�tmax�,
proportional to the dynamic correlation volume.14,15 �4�t� ex-
hibits various regimes,15 but most interesting for study of the
glass transition is the behavior around tmax��.16 Recent nu-
merical and simulation works have shown that the dynamic

correlation volume grows upon cooling.17–19 However, very
little is known about the combined temperature and density
dependences of �4�t�. In particular, unexplored is the possi-
bility of a description of the � and T dependences of �4�t� in
terms of the scaling property established for the structural
relaxation time20–22

� = F1���/T� , �2�

where F1 is a function and � a material constant. Experi-
ments have shown that Eq. �2�, with similar relations for the
diffusion constant and viscosity, applies universally to or-
ganic nonassociated liquids23 with a range of validity extend-
ing from the high temperature Arrhenius regime down to
Tg.24 We anticipate a similar relation for tmax and examine the
possibility that this scaling property extends to the dynamic
correlation volume

�4
max = F2���/T� . �3�

To cast this work in more general terms, we assess
whether for a prototypical model glass-former, the density
scaling properties hold for the full time dependence of both
Fs�k , t� and �4�t� using the same scaling exponent �. The
connection between the dynamic properties of viscous liq-
uids and � is intriguing because molecular dynamics �MD�
simulations have shown this parameter to be a measure of
the correlation between fluctuations in the potential energy
and the virial,25–27 possibly reflecting a hidden scale invari-
ance in viscous liquids.28 � is also related to the steepness of
the effective repulsive potential in the range of closest-
approach between particles,29–31 although this connection
may seem tenuous given the limitations of a two-body po-
tential in describing interactions in real liquids and the pos-
sible nontrivial role of attractive forces.31–33 We further ana-
lyze this herein by evaluating pressure-energy correlations
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for the model studied in Ref. 33, which did not conform to
density scaling over the relevant density regime.

In this work we consider the well-studied Kob–Andersen
�KA� binary mixture34 as a model glass-forming liquid. It
consists of 1000 particles in a cubic box with periodic
boundary conditions. Particles interact through the Lennard-
Jones �LJ� potential

u���r� = 4����	���

r

12

− 	���

r

6� , �4�

where � ,�=1,2 are species indices. The values of the pa-
rameters in Eq. �4� can be found in the original paper.34 In
the following we use reduced LJ units, assuming �11, �11,

and �m1�11
2 /�11 �where m1 is mass� as units of distance,

energy, and time, respectively. We performed MD simula-
tions in the NVT ensemble using the Nosé–Poincaré
thermostat35 with a mass parameter Q=5.0. We considered
five isochoric paths in the density range of 1.150	�
	1.350. For each state point we averaged the dynamic prop-
erties over 20 independent realizations of the system.

Following previous work and to emphasize the connec-
tion with the exact density scaling relations observed for
inverse power law �IPL� potentials, we analyze “reduced”
quantities �indicated by stars� using �−1/3 and T1/2 as reduc-
tion parameters for distances and velocities, respectively. We
begin our investigation of the density scaling properties
of the KA model by calculating Fs�k , t�
= �1 /N� j=1

N �exp�ik · �r j�t�−r j�0���� for the various densities
at a fixed reduced wave-vector k�=k��1/3�=7.44, which
matches the position of the first peak in the static structure
factor �k=7.0� for the well-studied density �=1.2. The re-
duced relaxation times ��, defined as the time for Fs�k� , t�� to
decay by a factor of e, are shown in Fig. 1 versus the scaling
variable �� /T. The material constant �=5.1
0.1 provides
the optimal collapse of �� onto a single curve; this value is in
accord with the scaling behavior found previously for the
diffusion coefficient of this system.30 We note that the pres-

sures attained at the lowest temperatures range from 1 to 20
reduced LJ units depending on �. Assuming argon units, this
corresponds to 0.04–0.8 GPa, which is a significant and ex-
perimentally accessible pressure range.

It has been demonstrated experimentally that the shape
of the frequency-dependent linear response function is a
function of � and thus of �� /T,36,37 a result consistent with
the existence of “isomorphic” points in liquid state
diagrams.38 We calculated the intermediate scattering func-
tions for each of the five densities at the respective tempera-
tures corresponding to a fixed value of �� /T=5.07. In the
inset of Fig. 1 these correlation functions are plotted as a
function of reduced time, and, as found recently over a more
limited density range,38 Fs�k� , t�� has essentially the same
shape for state points for which �� /T is constant. Thus, not
only do the relaxation times superpose as a function of �� /T,
but the entire t-dependence of the correlation functions is
invariant for isomorphic state points.

We now examine the correlations in the dynamic fluc-
tuations to assess explicitly whether density scaling can be
extended to high-order correlation functions, as envisaged in
Ref. 38. To do this we calculate the four-point dynamic sus-
ceptibility �Eq. �1�� associated with the complex instanta-
neous value of fs�k , t� at the same fixed reduced wave-vector
k� considered above. The use of the complex self-
intermediate scattering function �rather than the real part
used in previous studies� removes the finite long-time limit
from �4�t� without altering the general features of the corre-
lation function. In Fig. 2 the maximum of �4�t� is plotted as
a function of �� /T using the aforementioned �=5.1. To pro-
vide an estimate of the statistical uncertainties, we include
errors bars that represent two standard deviations on the av-
erage over system realizations for selected states. As seen in
Fig. 2, density scaling applies to �4

max within the estimated
error using the same value for the scaling exponent that su-
perposes the relaxation times. In the inset of Fig. 2, we show
the full t-dependence of �4�t� for state points at which
�� /T=5.07. As is the case for the “average” intermediate
scattering functions, within the estimated error bars the �4�t�
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FIG. 1. Reduced relaxation times ��=���1/3T1/2� as a function of �� /T with
�=5.1 for all studied densities. Inset: Self-intermediate scattering functions
as a function of reduced time t�= t��1/3T1/2� for state points at which �� /T
=5.07: T=0.402 �at �=1.15�, T=0.50 �at �=1.20�, T=616 �at �=1.30�, and
T=0.912 �at �=1.350�. A constant reduced wave-vector k�=k��1/3�=7.44 is
considered.
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FIG. 2. Maximum of four-point dynamic susceptibility as a function of �� /T
with �=5.1 for all studied densities. Inset: Four-point dynamic susceptibility
as a function of reduced time t� for state points at which �� /T=5.07 �same
state points as inset of Fig. 1�.
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fall on a single curve. Deviations from the scaling are ob-
served only for the lowest investigated density ��=1.15�.

To make contact with previous numerical and experi-
mental work on four-point dynamic susceptibilities, we show
in Fig. 3 �4

max as a function of the reduced relaxation times
��. Since �4

max is proportional to the dynamic correlation vol-
ume, Fig. 3 confirms the presence of a steady but rather mild
growth of dynamic correlations as the structural relaxation
times increase to the point of vitrification. It also shows that
at fixed ��, the dynamic correlations are invariant to either T
or �, as expected from the density scaling of both the average
dynamics and the dynamic correlations for the same value of
�. Recent experiments19 have shown that a similar result
holds for the temperature derivatives of the two point dy-
namic correlation function �T�t�, which provides a lower
bound to �4�t�.16,17 This correspondence supports the validity
of the experimentally accessible �T�t� as an approximation to
�4�t�. In the inset of Fig. 3, we show the ��-dependence of
the reduced time associated with the maximum in �4�t�. As
expected, the two quantities are essentially equal.

Recent numerical work25–27 has shown that the dynamic
scaling exponent � can be independently estimated on the
basis on the correlation between fluctuations of two thermo-
dynamic quantities, the potential energy U and the virial W
�the configurational part of the pressure�. These fluctuations,
�U=U− �U� and �W=W− �W�, are proportional for particles
interacting with IPL potentials25 and have been shown to be
strongly correlated �Pearson correlation coefficients R�0.9�
for various other liquids.26 In the latter cases the slopes, ob-
tained from linear regression of �W versus �U, are equal
within the statistical fluctuations to the dynamic scaling
exponent.27 Such results support the conjecture that liquids
display strong U-W correlations if and only if they comply
with density scaling,25 the inference being that these proper-
ties have a common origin in the same generalized IPL ap-
proximation of the interaction potential.26

To further elaborate on these aspects, we show in Fig. 4
the �W versus �U slopes, , obtained for the KA model, as
a function of T for two densities ��=1.2 and 1.3�. �T ,�� is
always close to the scaling exponent �within the estimated

uncertainty�, as found previously from simulations along iso-
baric paths.27 Also included in Fig. 4 are results from addi-
tional simulations carried out using the purely repulsive
Weeks–Chandler–Andersen �WCA� variant of the KA
model.39,40 In the WCA model, the interaction parameters are
unchanged, but each of the pair potentials, u���r�, is shifted
so that the minimum is zero and the potential is truncated at
this minimum.39 Very recently, Berthier and Tarjus33 con-
cluded from simulations of this model that density scaling
surprisingly requires the contribution of the attractive inter-
actions; in the WCA model, in fact, the scaling of � was
absent except at very high densities. As seen from Fig. 4 and
its inset, in the WCA model there are strong U-W correla-
tions �R�0.9�; however, the value of  changes significantly
as the state parameters are varied. That is, the local scaling
exponents change too much �for reasons yet unknown�, caus-
ing a breakdown of the density scaling. Nevertheless, for
every state point U and W are strongly correlated.

In the light of these results, the conjecture of Pedersen et
al.25 connecting strong U-W correlations and density scaling
must be partly reformulated. The existence of strong U-W
correlations is not a sufficient condition for Eq. �2� to apply.
There is an additional requirement, that the slopes of the
U-W correlation must be �almost� insensitive to variations in
the state parameters. This is consistent with previous simu-
lation and experimental results on local dynamic scaling
exponents.41,42 Under these conditions, density scaling ap-
plies to a very good approximation to all time-dependent
properties, including high-order time-dependent correlation
functions, as conjectured in Ref. 38. On the other hand, fur-
ther work is needed to understand under which conditions
the slopes of U-W correlation are insensitive to variations in
� and T and how this is related to the attractive part of the
interaction potential.

From simulations over a range of T and �, the dynamic
correlations in a supercooled LJ mixture are shown to have a
spatial extent that depends only on the quantity �� /T. In
consideration of the general behavior of liquids obeying den-
sity scaling, this means the dynamic correlation volume is
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related to other mutually correlated properties: the relaxation
time, the shape of the relaxation function, U-W correlations,
and at least approximately the isobaric fragility. From experi-
ments it is also found that the relaxation time is constant both
at the onset of non-Arrhenius behavior at high T43 and at the
dynamic crossover at approximately 1.2Tg.44,45 Since �4

max

depends only on �, these changes in the dynamics also occur
at a fixed �pressure-independent� correlation volume. Al-
though examining repulsive exponents other than the LJ
value of 12 remains for future work, if the equivalence of the
scaling exponents for �4

max and � is maintained, we expect
that the dynamic correlation volume should vary among dif-
ferent materials.
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