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Thermodynamic interpretation of the scaling of the dynamics
of supercooled liquids
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The recently discovered scaling law for the relaxation times, ��T ,��=I�T���, where T is temperature
and � the specific volume, is derived by a revision of the entropy model of the glass transition
dynamics originally proposed by Avramov �J. Non-Cryst. Solids 262, 258 �2000��. In this
modification the entropy is calculated by an alternative route. The resulting expression for the
variation of the relaxation time with T and � is shown to accurately fit experimental data for several
glass-forming liquids and polymers over an extended range encompassing the dynamic crossover.
From this analysis, which is valid for any model in which the relaxation time is a function of the
entropy, we find that the scaling exponent � can be identified with the Grüneisen constant. © 2006
American Institute of Physics. �DOI: 10.1063/1.2206582�
I. INTRODUCTION

Although the differences between the macroscopic prop-
erties of a liquid and amorphous solid are manifest, micro-
scopically the two states are not so easily distinguished. The
formation of a glass by progressive cooling �or compression�
of a liquid is associated with a characteristic time scale for
the dynamics, with the microscopic structure of the liquid
retained. Given the ubiquitous presence of glassy materials
in nature and their central importance to technologies in di-
verse fields such as biology, engineering, and geophysics, it
is unsurprising that much effort is devoted to studying the
glass transition. What might be surprising, however, is that
research into this complex phenomenon remains at the
model-building stage, with even the correct approach for the
latter a contentious issue. Very generally, there are two inter-
pretations based either on “free volume” concepts, whereby
molecular motions are jammed in accord with the available
unoccupied space1,2 or on activated dynamics, with mol-
ecules transiently trapped in potential wells on the energy
landscape.3–5 While these models have been tested using
many experimental techniques,6,7 the measurements usually
involve temperature variations at atmospheric pressure. Such
experiments convolute changes in density with changes in
thermal energy, making difficult the identification of the fac-
tors governing the supercooled dynamics. Less often, due to
experimental complexities, measurements are carried out as a
function of hydrostatic pressure. These allow decoupling of
volume and temperature effects, providing more rigorous
tests of models for the glass transition.
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Specific techniques for measuring relaxation of glass-
forming liquids under high pressure include neutron
scattering,8–11 light scattering,12–19 viscosity,20–27 and dielec-
tric relaxation.28,29 The latter has the advantage of providing
a broad frequency range �routinely ten decades and even
more at ambient pressure�, which is essential since relaxation
times vary by many orders of magnitude in the supercooled
regime. Although dielectric spectroscopy measurements at
elevated pressure were carried out 40 years ago,30–39 there
has been a bit of a lull until very recently. For a comprehen-
sive review of high pressure measurements see Ref. 28

An important recent finding from high pressure relax-
ation measurements of the dielectric relaxation time � is the
existence of a scaling relation,40–43

��T,�� = I�T��� , �1�

where ��T , P� is the specific volume and � is a material
constant. This exponent is found to have values between 0.16
and 8.5.40–44 The power-law form enables accurate superpo-
sitioning over a broad range of T and �. Alternate forms,
such as a linear scaling of Tarjus et al.,45 have been pro-
posed, but they fail for data encompassing an extended
range.28,43 Among possible justifications for the scaling, one
hypothesis is that the repulsive part of the potential domi-
nates the local liquid structure,46,47 so that for local proper-
ties the potential energy can be approximated with the
spherically symmetric form,48,49

U�r� = ����

r
�n

−
a�

r3 , �2�

where � and �� are the characteristic energy and length scale

of the system, r is the intermolecular distance, and n is a
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constant. The mean-field parameter a� describes the long-
range attractive potential, which can be taken as a constant.
Recent simulations of the glass transition have employed this
inverse power repulsive potential.50,51 A potential of this
form suggests that the local properties should scale as a
power law in n, or in terms of the volume according to Eq.
�1� for the dynamics �note �=n /3�. The implied scaling was
verified for the Lennard-Jones 6–12 ��=4� liquid
o-terphenyl11 �OTP� by neutron scattering measurement, and
subsequently over a broader range of frequencies by light
scattering17 and viscosity measurements.45

For other materials the potential deviates from �=4 but
by taking the exponent to be an adjustable parameter �but
independent of T, �, and P�, the scaling can be extended to a
large number of supercooled liquids and polymers.40–44 The
wide range of values determined empirically for � makes a
direct connection between � and the repulsive potential ex-
ponent n in Eq. �2� problematic. Certainly the assumption of
spherical symmetry cannot be strictly valid for interactions
such as hydrogen bonds or the intramolecular bonds of a
polymer backbone. Nevertheless, even in these cases the
power-law scaling of Eq. �1� yields accurate superpositioning
of relaxation times measured over a wide range of T and P.

The exponent � is a material constant determined by
superpositioning of experimental data. The function I�T���
is unspecified but for a given class of materials, e.g., organic
liquids and polymers, it is expected to have the same form.
In this paper we eschew the intermolecular potential ap-
proach to T�� scaling, adopting an alternative interpretation,
based on an entropy model originally proposed by
Avramov.52–54 From an equation for the structural relaxation
time �or viscosity� in terms of the configurational entropy, we
derive a new expression for ��T ,��. This equation is found to
describe the relaxation times over the entire frequency range,
while satisfying the scaling relation �Eq. �1��. Furthermore,
this equation for ��T ,�� is valid for a range of glass-forming
materials. Of greater significance, we derive the parameter �
in terms of thermodynamical quantities, thus conferring a
more general identification of the T��-scaling behavior. Fi-
nally, we show that the scaling �Eq. �1�� is not limited only to
the Avramov model, but is valid for any model in which the
relaxation time is governed by the entropy �such as the fluc-
tuation model, as described in the Appendix�.

II. THE MODEL

The Avramov model52,53 is based on the notion that mo-
lecular motions are thermally activated, with a jump fre-
quency given by

�i�Ei� = exp�−
Ei

RT
� . �3�

Structural disorder gives rise to cooperative motion sur-
mounting a broad distribution of barrier heights, whose mean

frequency is
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��	 = 

0

Emax

��E���E,��dE �4�

where ��E ,�� is the probability of barrier energy E, and � is
the variance of the Poisson distribution:

��E,�� =
exp��E − Emax�/��

��1 − exp�− Emax/���
. �5�

The details of ��E ,�� are unimportant, since the maximum
of Eq. �4� corresponds to values of Ei far from its
maximum.53 From Eqs. �3�–�5�,

��	 � �0 exp�−
Emax

�
� , �6�

where �0 is a constant. This indicates that the dynamics is
governed primarily by changes of the dispersion � rather
than changes of the barrier height.

The entropy �S� and � are related according to55

� = �r exp�2�S − Sr�
ZR


 , �7�

where �r is the dispersion at a reference state with entropy
Sr, and Z is the degeneracy of the system, i.e., the number of
available pathways for local motion of a molecule or poly-
mer segment �roughly proportional to the coordination num-
ber of the liquid lattice�. From Eqs. �6� and �7� it follows that

� = �0 exp�� exp�−
2�S − Sr�

ZR

� , �8�

where �=Emax/�r, and �0 is the limiting value at high tem-
peratures.

It can be seen that according to the Avramov model, the
behavior of � �or viscosity �� is mainly a function of the
entropy, while � and �0 are considered constants. The tem-
perature dependence of the relaxation time at atmospheric
pressure is then obtained by calculating the entropy S�T�
using the approximation that heat capacity CP �of the equi-
librium liquid� is temperature independent,

S�T� = Sr + 

Tr

T

CPd ln T� = Sr + CP ln� T

Tr
� . �9�

Substituting into Eq. �8� gives

��T� = �0 exp���Tr

T
�2CP/ZR� . �10�

This equation has been found to accurately describe experi-
mental data over a wide dynamic range.53

Extending the model to high pressure, the entropy is
calculated as a function of T and P �Refs. 53 and 56�

��T,P� = �0 exp���Tr

T
�2CP/ZR�1 +

P

	
�2
PVm	/ZR� , �11�

where 
P�=V−1��V /�T�P� is the isobaric thermal expansion
coefficient at atmospheric pressure, Vm is the molar volume,
and 	 is a constant. To calculate Eq. �11� from Eq., �8�, it is
assumed that 
p is inversely proportional to P. This expres-

sion gives a satisfactory description of experimental ��T , P�
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data and also yields an expression for the pressure depen-
dence of the glass transition temperature identical to the em-
pirical Andersson equation,57,58 the latter widely used to fit
Tg�P� results. �The Andersson equation can also be derived
from the Simon equation.59,76� One shortcoming, however, is
that the value of the Avramov parameters calculated from
thermodynamic quantities can differ from the values ob-
tained by fitting of experimental relaxation times.58 Another
problem is that according to Eq. �11�, the steepness index �or
fragility�4,60,61 defined as

mP =
1

Tg
� � log10���

��1/T� 

T=Tg

�12�

is a constant independent of P. In fact, experimental results
show unambiguously that for non-associated liquids mP de-
creases with increasing P.28,62–64

Herein we use the Avramov equation �8� as our starting
point, but adopt a different approach for calculation of the
entropy, using the total differential of S�T ,��

dS = � �S

�T
�

V
dT + � �S

�V
�

T
dV

=
CV

T
dT + �dP

dT
�

V
dV =

CV

T
dT +

CP − CV

V
PT
dV , �13�

where the expression for �P / ��T�V follows from the thermo-
dynamic relationship,

CP = CV +
TV
P

2

�T
= CV + TV
P� �P

�T �V, �14�

with �T�=− 1
V � �V

�P
��T the isothermal compressibility. Using the

fact that S is a function of state and considering CV to be
constant with respect to T and the difference CP−CV to be
constant with respect to V �as in the original model and ap-
proximately true over modest ranges of T and P—these ap-
proximations and their consequences are discussed at the end
of the following section�, it follows that

S�T,�� = Sr + CV�ln� T

Tr
� +

CP/CV − 1


PT
ln� �

�r
�
 . �15�

Defining

�G =
CP/CV − 1


PT
�16�

we obtain

S�T,�� = Sr + CV ln� T��G

Tr�r
�G
� . �17�

From the model �Eq. �8�� the relaxation time is then given by

��T,�� = �0 exp���Tr�r
�G

T��G
�2CV/ZR
 . �18�

Using

D =
2CV

ZR
, �19�
Eq. �18� can be rewritten as
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��T,�� = �0 exp���Tr�r
�G

T��G
�D
 . �20�

In Eq. �20� the parameters �0, �, �G, and D, as well as the
reference temperature Tr and volume �r are constants; there-
fore, this function satisfies the scaling relation �Eq. �1��.
However, it remains to be demonstrated whether Eq. �20�
provides a satisfactory description of ��T ,�� data. In the fol-
lowing section we fit this equation to experimental relaxation
times for various glass formers.

Equation �20� is more general than the Avramov model
underlying the above derivation. As shown in the Appendix,
the same expression can be obtained within the framework of
fluctuation theory, thus establishing a firm basis for the T��

scaling in an entropy conception of the glass transition dy-
namics.

III. TEST OF THE MODEL

To fit Eq. �20� to experimental data, we rewrite it as

log���T,��� = log��0� + � B

T��G
�D

. �21�

Therefore, there are four parameters available to describe
measurements for all T and �, one more than required to fit
only isobaric data �Eq. �10�� and one less than Eq. �11� of the
original Avramov model for elevated pressure.52,56 Employ-
ing the common definition that the relaxation time at the
glass temperature ��Tg ,�g�=100 s, and taking the ambient
pressures values of Tr=Tg and �r=�g, it follows that �
=ln�100/�0� and therefore B=�1/D�TgVg

�G�. This reduces the
number of adjustable parameters in Eq. �21� to three ��G, D,
and �0�.

The best fits obtained for 1 ,1�-di�4-methoxy-5-
methylphenyl�cyclohexane �BMMPC�,65,66 1,2-poly-
butadiene �1,2-PB�,67 phenolphthalein-dimethyl-ether

FIG. 1. Relaxation times of 1 ,1�-di�4-methoxy-5-methyl-
phenyl�cyclohexane �Refs. 65 and 66� at constant P=0.1 MPa �open sym-
bols� and isothermal conditions �solid symbols� at the indicated tempera-
tures. The solid line is Eq. �21� with the fit parameters listed in Table I. The
inset shows the relaxation times at atmospheric pressure as a function of

inverse temperature �open symbols� together with the best fit �solid line�.
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�PDE�,68,69 D-sorbitol,70 propylene carbonate �PC�,71 and
polymethylphenylsiloxane72 �PMPS� are displayed in Figs.
1–6 respectively, which show isobars and isotherms as a
function of specific volume. Also shown as an inset are
Arrhenius plots of the ambient pressure data. These particu-
lar glass formers were chosen because they represent a range
of dynamic behavior, as evidenced by the range of the scal-
ing exponent, 0.16���8.5.40–43 For each material, the fit-
ting was carried out simultaneously on all data sets; the ob-
tained parameters and the statistical significance of the fit
�
2� are listed in Table I. The functional form ��T ,�� �Eq.
�21�� derived from the Avramov model describes the data

FIG. 2. Relaxation times of 1,2-polybutadiene �Ref. 67� measured at con-
stant pressure �open symbols� and at constant temperature �solid symbols�.
The solid line is Eq. �21� with the fit parameters listed in Table I. The inset
shows the relaxation times at atmospheric pressure as a function of inverse
temperature �open symbols� together with the best fit �solid line�.

FIG. 3. Relaxation times for phenylphthalein-dimethylether �Refs. 68 and
69� vs the specific volume. The data were measured at constant pressure
�open symbols� and at constant temperature �solid symbols�. The solid line
is the fit to all data using Eq. �21�, with the fit parameters listed in Table I.
The inset shows the relaxation times at atmospheric pressure as a function of

inverse temperature �open symbols� together with the best fit �solid line�.
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very well over the entire range for the different thermody-
namical conditions, with �G in agreement with � from Eq.
�1�.

Calculating the isobaric fragility mP from Eq. �20�, with
the reference temperature taken as the glass temperature Tr

=Tg and with �G and D as constants, we obtain

mP = �D�1 + 
PTg�G� . �22�

This expression, unlike the equation derived originally in the
extension of the Avramov model to high temperature,52,56

does not predict an invariance of mP to pressure, since both

P and Tg are pressure dependent and their product decreases
with P.64 The present prediction that mP decreases with pres-
sure agrees with the general experimental result for nonasso-
ciated glass formers, dmP /dP�0.64 �Associated liquids, e.g.,

FIG. 4. Relaxation times of D-sorbitol �Ref. 70� vs specific volume for
isobaric �open symbols� and isothermal �solid symbols� measurements. The
solid line is Eq. �21� with the fit parameters given in Table I. The inset
shows the relaxation times at atmospheric pressure as a function of inverse
temperature �open symbols� together with the best fit �solid line�.

FIG. 5. Relaxation times of propylene carbonate �Ref. 71� vs specific vol-
ume for isobaric �open symbols� and isothermal �solid symbols� measure-
ments. The solid line is Eq. �21� with the fit parameters given in Table I. The
inset shows the relaxation times at atmospheric pressure as a function of

inverse temperature �open symbols� together with the best fit �solid line�.
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water, for which 
P�0 or 
P=0 may exhibit other behav-
ior.� Since the equation of the original model is the same as
Eq. �8�, the difference between the predicted mP�P� behavior
is ascribed to the different approximations used to calculate
S.

Similarly we can calculate the isochoric �constant vol-
ume� fragility, mV from

mV = �D . �23�

This indicates that mV is a constant, in agreement with
the experimental results.64 The ratio of the two fragilities is
given by

mV

mP
=

1

1 + �G
PTg
, �24�

a relation which has to be satisfied by any form of ��T ,��
satisfying the scaling relation ��T ,��=I�T���.41,64

From the equations for �G and D it follows that

mP =
2�CP

ZR
�25�

and

TABLE I. Avramov fit parameter ��Eq. �1��.

Material log��0� B

BMMPC −11.37±0.12 411±9
1,2-PB −7.71±0.06 353±2
PDE −9.37±0.04 129.2±0.9

sorbitol −9.40±0.24 326±4
PC −10.30±0.02 91.3±0.4

PMPS −10.3±0.2 185±4

aLiterature values determined from superpositioning
bReference 40.
cReference 64.
dReference 71.
e
Reference 28.

Downloaded 07 Jul 2006 to 132.250.151.61. Redistribution subject to
mV =
2�CV

ZR
, �26�

which together with Eq. �14� give

mP = mV +
2�

ZR
�TV
P

2

�T
�

T=Tg
. �27�

Taking ��Tg ,�g�=100 s,

mP = mV +
2 ln�100/�0�

ZR
�TV
P

2

�T
�

T=Tg
. �28�

This form resembles the recently reported linear correlation
for P=0 between the isobaric and isochoric fragilities,73

mP = �0.84 ± 0.05�mV + �37 ± 3� . �29�

Comparing these two equations, we note that mP�mV,
which means that � cannot be a function only of T �since that
requires mP=mV�.

In Table II we list the value of Z calculated by equating
the second term of Eq. �28� to its empirically determined
value of 37 �Ref. 73� �together with other known thermody-
namic properties�. We find that the parameter Z varies herein

FIG. 6. Relaxation times of polymethylphenylsiloxane
�Ref. 72� vs specific volume for isobaric �open sym-
bols� and isothermal �solid symbols� measurements.
The solid line is Eq. �21� with the fit parameters given
in Table I. The inset shows the relaxation times at at-
mospheric pressure as a function of inverse temperature
�open symbols� together with the best fit �solid line�.

�G D 
2 �a

.2±0.1 2.03±0.04 0.83 8.5b

89±0.01 7.76±0.13 0.4 1.9c

36±0.02 4.33±0.04 0.6 4.5c

13±.002 9.2±0.4 0.79 0.16b

82±0.01 4.62±0.03 0.6 3.7d

63±0.02 4.7±0.1 0.83 5.6e

perimental ��T ,��.
8
1.
4.
0.
3.
5.

of ex
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from 1.9 for 1,2-PB to 17.8 for BMMPC. This is in accord
with the original work of Avramov,74 who suggested Z�2
for polymers and Z�10 for molecular liquids.

From the definition of �G �Eq. �16��, together with Eq.
�14�, we can express �G as

�G =
V
P

CV�T
. �30�

This is the well-known thermodynamic definition of the Grü-
neisen constant.75 However, the identification of the scaling
exponent � with �G is not trivial.76 The Grüneisen constant is
generally defined in terms of the change of the vibrational
frequency with volume,75 which means that it includes ther-
modynamic contributions related to different degrees of free-
dom than those relevant to relaxation.

The result of Eq. �30� is not limited to the entropy model
considered here. In fact, since Eq. �30� can be rewritten as

V
P

CV�T
= �V/T�

�dS/dV�T
�dS/dT�V

, �31�

the scaling exponent defined by Eq. �1� is given by Eq. �30�
for any model for which � is a function of S�T ,��, provided
the entropy has the form

TABLE II. Properties of the materials at Tg and atmospheric pressure.
For polymers the molar volume refers to the repeat unit. The para-
meter Z was calculated from Eqs. �28� and �29� as Z
=1/37�2 ln�100/�0� /R���TV
P

2 /�T��T=Tg
.

Material
Tg

�K�
Vg

�cm3 mol−1�

P�104

�K−1�
�T�104

�MPa−1� Z

BMMPCa 263 196.4 7.90 3.62 17.8
1,2-PBb 253.5 56.44 7.10 5.50 1.9
PDEc 298 255.07 6.08 3.64 13.1

Sorbitold 267 111.58 4.45 1.14 8.8
PCe 158.3 77.16 6.72 2.14 4.7

PMPSf 245 118.2 5.80 3.6 4.9

aReference 66.
bReference 67.
cReference 18.

dReference 70.
eReference 71.
fReference 72.

TABLE III. Comparison of the Grüneisen constant at T�Tg �T was chosen
exponent �G calculated according to Eq. �30� and CV obtained from Eq. �14�
CP

liq /CV
liq= �CP

liq−CP
cryst� / �CV

liq−CV
cryst�.

Material
T

�K�
Vg

�cm3 mol−1�

P�104

�K−1�
�T�104

�MPa−1�

OTP 247 206.1a 7.08a 4.2a

PVAc 304 72.50c 7.15c 5.0c

PMMA 380 86.96e 5.8e 3.9e

Salol 220 169.25f 7.85f 3.09f

PC 164 69.43h 6.26h 2.21h

aReference 44.
bReference 78.
cReference 58.
dReference 79.
e
Reference 80.
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S�T,�� = I��T��G� . �32�

This is valid for the expression for S�T ,�� obtained here �Eq.
�17��. In fact, as recently shown,76 the result ���G can also
be derived from the assumption of a power-law intermolecu-
lar potential in combination with Eqs. �31� and �32�.

In Table III the parameter �G is calculated using Eq. �30�
from literature data, with the isochoric heat capacity taken
from its isobaric value using Eq. �14�. We find that the �G

obtained in this fashion are all smaller �by roughly one-third�
than the values deduced from superpositioning of experimen-
tal relaxation data. This discrepancy between the predictions
from the thermodynamic values and the experimental � may
be explained �i� in terms of the different contributions to the
heat capacity, some of which may not affect �, and �ii� the
nonideal behavior of the thermal pressure coefficient
��P /�T�V. Both these items are discussed in the following.

The heat capacity CP of the liquid involves contributions
from other motions which are not involved in structural re-
laxation but their removal is not trivial. One approach �used
in evaluating other entropy models77� is to use the difference
�CP of the heat capacities of the liquid and crystal rather
than CP. We make the assumption that the ratio between CV

and CP is equal to the ratio �CV /�CP. The exponent �G�
calculated using this value for the heat capacity is in all cases
�excepting polymethylmethacrylate �PMMA�, which has a
strong secondary relaxation� quite close to the value of �
obtained from the scaling of relaxation data �Table III�. �In
principle the same correction should be applied to 
P and KT,
but the effect on their ratio is small.�

Regarding the approximations used to calculate the en-
tropy, in Eq. �13� we considered �Cp−Cv� /
PT to be inde-
pendent of � �which is equivalent to taking ��P /�T���1/��.
This approximation is not necessarily accurate even if CV

and CP are approximately independent of �. To assess this
approximation, we calculated ��P /�T�� from the parameters
of the equation of state for different values of the volume.
The values of the derivative for different materials are plot-
ted versus the reciprocal of � in Fig. 7. The behavior can be
well described by a linear equation ��P /�T��=a+ �b /��, for
which the best-fit parameters �solid lines in Fig. 7� are listed

se as possible to Tg but avoiding interpolation of CP data� with the scaling
as calculated using the difference CP

liq−CP
cryst rather than CP

liq and assuming

CP
liq

�J mol−1 K−1�
CP

cryst

�J mol−1 K−1� �G �G� �j

338.3b 225.16b 1.2 3.6 4
156.91d 116.2d 0.7 2.7 2.5
203.16d 166d 0.7 3.8 1.25
298.41g 186.7g 1.9 5.1 5.2
158.56i 87.22i 1.4 3.1 3.7

fReference 19.
gReference 81.
hReference 71.
iReference 82.
j

as clo
. �G� w
From superpositioning ��T ,��.
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in Table IV. Since a�b, the a cannot necessarily be ne-
glected. If we include the linear expression for ��P /�T�� in
Eq. �13�, the entropy relation becomes

S�T,�� = Sr + CV ln� T

Tr
� + b̄ ln� �

�r
� + ā�� − �r� , �33�

where ā and b̄ are the parameters a and b multiplied by the
molecular weight.

Since for the change of volume considered � /�r�1, this
equation can be well approximated as

S�T,�� = Sr + CV ln� T

Tr
� + �b̄ + ā�r�ln� �

�r
� , �34�

and therefore the expression for ��T ,�� becomes

��T,�� = �0 exp���Tr�r
�G

T��G
�2CV/ZR
 , �35�

where

�G = �b̄ + ā�r�/CV = �b̄ + ā�r�/�CP + T�
P�ā + b̄/��� . �36�

.
From Eq. �36� we see that �G is dependent on �. How-

ever, since the term in the denominator depending on � �i.e.,
the difference between CP and CV� is much smaller than the
first term, this dependence of �G on � is negligible: We esti-

FIG. 7. Temperature derivative of the pressure at fixed volume as a function
of the inverse volume �calculated from the equation of state�. The solid lines
are the linear fits �parameters in Table IV�.

TABLE IV. Linear fit parameters of the dependence of ��P /�T�� on inverse
volume �solid lines in Fig. 7�.

Material
a

�MPa K−1�
b

�MPa K−1 ml g−1�

OTP −5.8±0.2 6.6±0.2
PVAc −6.1±0.2 6.3±0.2
PMMA −2.1±0.2 2.7±0.2
Salol −10.3±0.2 10.0±0.2
PC −5.6±0.2 6.5±0.2
Downloaded 07 Jul 2006 to 132.250.151.61. Redistribution subject to
mate that the change of �G is less than 5% over the entire
range of the data considered here. Moreover, Eq. �36� can be
rewritten as

�G =
Vr

CV
� �P

�T
�

V=Vr

, �37�

which is essentially equivalent to Eq. �30� for small relative
changes of volume. So the values of the parameter �G are
those reported in Table III, and in practice even if the volume
dependence of the thermal pressure coefficient was not
strictly proportional to the volume, in the range over which
we have tested our model, the error is negligible.

IV. CONCLUDING REMARKS

The idea for the T�� scaling40,41 arises from consider-
ation of a generalized repulsive potential,48,49 which is drawn
from a Lennard-Jones-type intermolecular potential.11,17,45

Although the material constant � is determined empirically,
the function I�T��� itself is unknown a priori. Starting from
an equation originally proposed by Avramov,74,83–85 which
related the relaxation times of glass formers to the entropy
change accompanying vitrification �Eq. �8��, the function �
=I�T��� is derived with ���G. The difference in our ap-
proach from that of Avramov is the thermodynamic paths
used to calculate the total entropy, whereby some of the ap-
proximations used in the original derivation are avoided.
Moreover, obtaining an expression for ��T ,�� having the
form of Eq. �21� does not rely on the Avramov approach; it
can be derived from any model in which the relaxation time
is governed by the entropy, since the change of entropy is a
function of T�� �Eq. �17��. This is demonstrated in the Ap-
pendix, wherein the same expression for ��T ,�� is obtained
from fluctuation theory.

The modified Avramov equation �Eq. �21�� accounts well
for the variation of relaxation times with T and � for a variety
of organic liquids and polymers. Beyond the success of Eq.
�21� as a fitting function for a broad range of experimental
variables, the exponent � is now related to thermodynamic
quantities, providing a new and more rigorous basis for the
T�� scaling. Specifically, we find that � can be identified
with the Grüneisen parameter. The connection of the scaling
exponent to other molecular properties is of particular inter-
est because it suggests the possibility of extracting the P and
� dependences of � from measurements merely at ambient
pressure. The main limitation appears to be obtaining reliable
values for �G. This is related to the need to use only that part
of the entropy related to the structural relaxation, as shown
from the better agreement between � and ��G, where for the
latter the difference of the heat capacity between the liquid
and the crystal was used rather than the heat capacity of the
liquid.

The revised model gives the correct dependence of the
fragility on pressure, in contrast to the original erroneous
prediction63 from the Avramov model that the fragility was
independent of pressure. We also obtain a relationship be-
tween the isochoric and isobaric fragilities in quantitative
accord with a recently reported empirical correlation �Eq.

73
�29��. From this we estimate the number of available path-
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ways for local motion; the results �Z�2 for polymers and
Z�10 for small molecules� are consistent with expectations
from the original Avramov model.

Commonly, the T dependence of the dynamics of super-
cooled liquids at constant pressure is described using the
Vogel-Fulcher-Tammann-Hesse �VFTH� function.86–88 How-
ever, the VFTH function is limited to data above a charac-
teristic �“dynamic crossover”� relaxation time �B,69,89–92

whereas Eq. �21� describes ��T ,�� over the entire dynamic
range, including variations in P as well as T. �Note, however,
that all data herein are below the temperature at which the
relaxation time assumes Arrhenius behavior. This tempera-
ture is significantly greater than the temperature of the dy-
namic crossover.89� Other models, such as that due to Adam
and Gibbs77 �AG� and its extension to high pressure,93–99

also fail to describe ��T , P���B.95,100 The only model
found101–103 to fit data over a range encompassing the dy-
namic crossover is the Cohen-Grest �CG� free volume
model,104 in which the dynamic crossover is identified with
the percolation of free volume.103 The CG model employs
five adjustable parameters �one more than Eq. �21�� for
��T , P�; moreover, the physical plausibility of the obtained
parameters has been questioned,105 in addition to any inher-
ent difficulties with a purely free volume approach.106

An important feature of the Avramov model, distinguish-
ing it from the AG and CG models and from functional
forms such as the VFTH, is that Eq. �21� does not predict any
divergence of � with decreasing T and/or �. There is only a
monotonic, progressive slowing down of the dynamics. As
described herein, this slowing down is driven by the increas-
ing heterogeneity of the dynamics related to the increased
dispersion of the energy barrier distribution. Of course, an
absence of any divergence is implicit in the scaling relation
Eq. �1�.
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APPENDIX: FLUCTUATION THEORY

The basic idea is that Landau-Lifshitz thermodynamic
fluctuation theory107 in conjunction with the notion of coop-
eratively rearranging regions77 in a supercooled liquid leads
to the key result of the Avramov model, namely, Eq. �21�. A
cooperatively rearranging region is a subsystem that upon
sufficient fluctuations can rearrange itself, independent of its
environment, leading to viscous flow.77 The subsystem to-
gether with the remaining part of the system constitutes a
closed system.

The probability of a fluctuation in the closed system
within the framework of Landau-Lifshitz fluctuation theory
is P�exp��St /R�, where �St is the entropy change on fluc-
tuation of the entire system.107 Denoting by �S, �V, and �E
as the respective changes in entropy, volume and energy
upon fluctuations in the subsystem, then the minimum work
due to reversible changes in thermodynamic quantities of the

subsystem is

Downloaded 07 Jul 2006 to 132.250.151.61. Redistribution subject to
wmin = T�St = − ��E − T�S + P�V� . �A1�

The probability of a fluctuation in the subsystem is then107

P = exp�− ��E − T�S + P�V�/RT� . �A2�

Note that Eq. �A2� is valid for large as well as for small
fluctuations.107

If fluctuations are small, and since the �internal� energy
E is a function of S and V, �E can be expanded in a Taylor
series to quadratic order. Substituting this expansion in Eq.
�A2�, we obtain the probability of a fluctuation in the sub-
system or a cooperative rearranging region,107

P � exp��2T�−1� �V

�P
�

S
− ��S�2/2RCP
 . �A3�

Assuming that the temperature dependence of the first term
is weak relative to the �S term, we absorb the former into a
factor, A, which is weakly temperature dependent relative to
the exponential term,

P = A exp�− ��S�2/2RCP� �A4�

The relaxation time for cooperative rearrangement is in-
versely proportional to the transition probability for a coop-
erative rearrangement,

� = �0 exp���S�2/2RCP� , �A5�

where �0 is approximately A−1.
From Eq. �17�, the change in entropy is �S=

−CV ln�B /T��G�. Substituting this expression in Eq. �A5�, we
obtained the desired result

ln � = ln �0 + �B/T��G�CV/gR, �A6�

where g=CP /CV. Equation �A6� is identical in form to Eq.
�21� drawn from the Avramov model.
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