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The correlation between the magnitude of the Debye–Waller anomaly and the temperature
dependence of the relaxation time and viscosity of glass-forming liquids~i.e., their fragility! is
investigated using the coupling model of relaxation. The correlation is shown to be a natural
consequence of the relationship between the noncooperative and intermolecularly cooperative
relaxation times of the model. Specifically, the deviation of the mean squared displacement from a
linear temperature dependency increases as the fragility~in the Angell sense! of the glass-forming
liquid increases because more fragile glasses exhibit substantially more short-time, noncooperative
relaxation. This latter fact arises from their shorter noncooperative relaxation times, as deduced
from the coupling model. ©1996 American Institute of Physics.@S0021-9606~96!50108-8#

INTRODUCTION

A comprehensive interpretation of the myriad properties
associated with glass-forming liquids remains an unattained
goal. The diffusion of supercooled small molecules, proteins,
and polymers is frequently observed.1 A notable feature of
this diffusion is the departure of the mean square displace-
ment, (̂ r 2&), from a linear dependence on temperature. The
onset of supralinearity, referred to as the anomalous Debye–
Waller factor, has been viewed as the onset of inelastic
effects2–4 or anharmonic vibrational motion,1,5,6 or the result
of ‘‘soft phonons.’’7 On the other hand, we have recently
demonstrated8–10that anomalous Debye–Waller factors can
be associated with the appearance of relaxation processes,
with the vibrations remaining strictly harmonic. Experimen-
tally this is found to occur at temperatures for which relax-
ation becomes significant over the experimental time scale;
this, of course, is in the vicinity of the glass transition tem-
perature.

It has been pointed out by Angell5,6 that the fragility of
the liquid ~i.e., the degree to which the normalized tempera-
ture dependence of viscosity or relaxation time,t, departs
from Arrhenius behavior! correlates with the temperature as-
sociated with observation of an anomalous Debye–Waller
factor; ‘‘stronger’’ liquids exhibit the supralinearity in̂r 2& at
higher temperatures than found for fragile liquids.5,6 It is also
apparent5,6 that more fragile liquids exhibit steeper rises in
^r 2& at high temperature. Fragility, and the associated con-
nection to the shape of the relaxation function, can be di-
rectly accounted for by the coupling model of
relaxation.11–14 We have previously demonstrated that the
short time (; 10212 s) relaxation of amorphous glasses can
be well-described by the coupling model.8–10 It is of interest
to consider the properties of^r 2&, with the intent to examine
any correlation between the temperature dependencies oft
and ^r 2&.

ANALYSIS

We are interested in the diffusion of particles in the
glassy state. Provided the Gaussian approximation holds, the
mean squared displacement,^r 2&, is related to the density–
density self-correlation function,C(t), as15

^r 2&52
6

Q2 ln C~ t !, ~1!

whereQ is the wave vector~Qth mode of the density fluc-
tuations!. Note that the essential conclusions of the present
work will be valid even when the Gaussian approximation
breaks down. In general, density fluctuations arise from
translational, rotational, and vibrational degrees of freedom.
If the former ~the relaxation part! and the vibrations are in-
dependent, the correlation function can be expressed as a
product

C~ t !5Cpho~ t !3Crel~ t ! ~2!

with the phonon contributionCpho(t;Q,T) given by15

Cpho~ t;Q,T!5exp2@Q2W~ t,T!#. ~3!

Although Eq.~2! is assumed for convenience, again the re-
sults presented herein should remain qualitatively the same
regardless. For harmonic phonons

W~ t,T!5KE g~v!@12cos~vt !#v21

3F 2

exp~\v/kT!
11Gdv, ~4!

whereK is a temperature-independent constant. The vibra-
tional density of states,g~v!, can be represented by10

gD~v!5v2 exp2S v

vD
D , ~5!

wherevD is the Debye frequency. The exact vibrational den-
sity of states could be used in place of the assumedgD(v) in
Eq. ~4!. We are also neglecting the boson peak herein. Using
Eqs.~3!–~5!, C(t)pho can be obtained by fitting low tempera-
ture experimental data, for whichCrel(t) remains equal to
unity over the time range of interest.

At higher temperatures relaxation contributes to the de-
cay of the correlation function, with the coupling model of
relaxation used to describe this contribution. Discussed in
detail elsewhere,16,17 the important feature of the model is
the assumption that in densely packed, interacting systems
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there exists a temperature independent crossover time,tc ,
separating two regimes. At short times,t , tc , the correlation
function has the Debye form

C~ t !5exp2S tt0D ~6!

and often an Arrhenius temperature dependence, whereas for
t. tc ,

C~ t !5exp2S t

t* D
b

~7!

and the temperature dependence of the relaxation time can be
non-Arrhenius. The stretch exponent,b, is related to the cou-
pling parametern 5 ( 5 1 2 b), whose magnitude (0< n
, 1) reflects the degree of intermolecular cooperativity of
the relaxation.

In reality the crossover from Debye behavior@Eq. ~6!# to
the stretched exponential form of Eq.~7! occurs over some
range of times in the vicinity oftc . Continuity of Eqs.~6!
and~7! at t 5 tc gives the important relation

t*5~ tc
b21t0!

1/b. ~8!

An Arrhenius temperature dependence of the noncooperative
relaxation time

t05AQ22 expS Ea

RTD , ~9!

where Ea is the activation energy and the prefactorA is
temperature independent, together with Eq.~8! yields for the
intermolecularly coupled relaxation time

t*5~AQ22tc
b21!1/b expS Ea

bRTD . ~10!

Cpho(t) is thus determined from low temperature, short
time data, while at higher temperatures Eqs.~6!–~8! are used

FIG. 1. Density–density self-correlation function~solid lines! for Q 5 1.94
Å21 calculated using the indicated values of the stretch exponent for tem-
peratures~a! below, ~b! at, and~c! above the glass transition temperature.
The relaxation time was determined using a~constant! value of the activa-
tion energy necessary to yieldt* 5 7.33 1029 s atT 5 243 K for allb. The
phonon,Cpho(t), and relaxation,Crel(t), components@Eq. ~2!# are repre-
sented by the respective dotted and dashed lines. The crossover time of the
coupling model,tc 5 2.03 10212 s, is indicated by the vertical dotted line.
Note that, as a consequence of Eqs.~6! and ~8! the broader relaxation
function ~b50.2! decays muchfasterat short times (t , tc), particularly at
higher temperatures.

FIG. 2. Representative calculations of the mean square displacement for
b50.5 using vD53.231012 rad/s, K51.8310227 s2, tc52310212 s,
andEa 5 3.9 kcal/mol. The curves correspond toT 5 25, 50, 84, 133, 205,
243, 305, 350, and 400 K~bottom to top!. At longer times there is no
diffusion at low temperature.
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to describe the relaxation part of Eq.~2!. This approach has
previously been shown to describe molecular dynamics
simulations and quasielastic neutron scattering results on
several glass forming liquids and polymers.8–10,18,19

Herein we use as our starting point earlier results used to
fit molecular dynamics simulation data onortho-terphenyl.10

It was shown therein that takingtc 5 2 3 10212 s,vD 5 3.2
3 1012 rad/s, andK 5 1.83 10227s2, molecular dynamics
simulation results on the high frequency relaxation of OTP at
a fixedQ 5 1.94 Å21 could be faithfully reproduced with
b50.5,Ea5 3.9kcal/mol, andA5 9.83 10215s Å22.10Since
our interest herein is investigating the manner in which fra-
gility influences diffusion, we calculate the mean squared
displacement@Eq. ~1!# for variousb. It is well-established,
and follows directly from Eq.~10!, that a smaller stretch
exponent, signifying more intermolecular
cooperativity,14,20,21results in a stronger temperature depen-
dence of the relaxation times11–14,22–25~greater ‘‘fragility’’ !.
To execute a valid comparison of the effect ofb on diffusion,
we use a constant value of the cooperative relaxation time,
t* 5 7.33 1029 s, at the calorimetric glass transition tem-
perature of OTP, for whichTg 5 243 K. This value oft* then
determines the value oft0 for any givenb @Eq. ~8!#. Note
that this relaxation time fort* ~243 K! is rather small in
comparison to macroscopic values, which typically are on
the order of 100 s, because of the small length scale (Q21

, 1 Å! considered herein, and also accessed in the molecular
dynamics simulation.10

We calculateC(t) and ^r 2& by two procedures.~i! The
activation energy for the noncooperative relaxation,Ea , is
kept constant~53.9 kcal/mol!, with the prefactorA in Eq. ~9!
adjusted to give the same value for the cooperative relaxation
time, t* 5 7.33 1029 s, as determined for OTP at 243 K.
Alternatively, ~ii ! the activation energy is adjusted to yield
this value oft* ~243 K!, using the same prefactor~A 5 9.8
3 10215 s Å22! as for OTP, independent ofb. The results
obtained using these two procedures are given in the next
section.

RESULTS

In Fig. 1 we show representative results for the correla-
tion function at three temperatures, as calculated using vari-
ous values of the stretch exponent in Eq.~7!. The phonon
contribution is the same for allb, with the value of the pref-
actor A in Eq. ~10! adjusted to give a fixedt* ~243
K!57.331029 s. The noteworthy feature of this data is that
while smallerb gives a slower rate of relaxation at longer
times, whent , tc the decay is actuallyfaster. This is a con-
sequence of the smaller value for the noncooperative relax-
ation,t0, which follows from Eq.~8! of the coupling model.
The temperatures in Fig. 1 correspond toT , Tg , T 5 Tg ,
andT . Tg . The steeper decay at short time is enhanced at
higher temperatures, for which relaxation begins to dominate
theC(t) in Eq. ~2!.

The mean square displacement can be calculated from
the correlation functions using Eq.~1!. An illustrative result
is shown in Fig. 2~which is strikingly similar to the data of

Roe26! for the case ofb50.5. Note that at low temperatures
there is no diffusion at longer times; the molecules are bound
within a volume governed by their liquid state neighbors.
This long time limiting value is referred to as the Debye–
Waller factor. As the temperature approaches the glass tran-
sition temperature,̂r 2& begins to rise above this long time
plateau. This process has been described as the onset of
anharmonicity,1,5,6 implying that vibrations propel the mol-
ecules over the potential barrier imposed by the surrounding
atoms. However, it is clear from examination of theC(t)
synthesized using Eqs.~2!–~10! that the supralinear diffusion
cannot be due to vibration, but rather is a direct consequence
of relaxation. Specifically, the mean square displacement be-
gins to rise at temperatures for whicht* @Eq. ~7!# assumes a
value low enough that the contribution fromCrel(t) in Eq.
~2! becomes significant. This temperature is in the vicinity of
Tg .

Following the suggestion of Angell,5,6 we choose a time
in the range 0.5–2 ps, and plot the corresponding value of
the mean square displacement as a function of temperature.
Note that experimental data on selenium by Buchenau and
Zorn7 were obtained by essentially the same procedure.22

Results are given in Fig. 3 forb50.2, 0.5, and 0.8 evaluated
at t 5 2 ps. For each calculationt* ~243 K! was set equal to
7.331029 s, with the consequent values of the relaxation
time at all other temperatures calculated assumingEa 5 3.9
kcal/mol, independent ofb. As described above, the phonon
contribution, calculated using Eqs.~3!–~6!, was the same for
all b. Figure 3 shows that smaller values ofb give substan-
tially more departure of̂ r 2& from a linear temperature de-
pendence. The anomaly in the Debye–Waller factor, at least
in the present case, is a direct consequence of greater relax-
ation occasioned by the smallert0. A lower value for the
noncooperative relaxation time is inevitable for smallerb
whenever we have the conditiont0 . tc as seen from Eq.~8!.
Since smallerb means greater fragility,11–14,23–25the corre-

FIG. 3. The variation in the plateau value of the mean square displacement
with temperature, evaluated at 2310212 s from data such as is shown in Fig.
2. The prefactorA @Eq. ~10!# was adjusted to give a constantt* at 243 K.
The change in slope, occurring nearT 5 Tg , corresponds to the anomaly in
the Debye–Waller factor.
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lation of the magnitude of the anomalous Debye–Waller fac-
tor with fragility follows directly.

In Fig. 4 we show the same data as in Fig. 3, however,
the ^r 2& is now evaluated att 5 0.5 ps. While the displace-
ments are smaller, the general pattern remains. The increas-
ing magnitude of the anomalous Debye–Waller factor with
decreasingb is not sensitive to the particular time used for
the assessment of^r 2&.

The data in Figs. 3 and 4 was generated assuming a
constant activation energy. As an alternative, we can fix the
pre-exponential factorA to be a constant (5 9.83 10215 s!.
This means we letEa vary in order to maintaint* ~243
K!57.331029 s for all b. This method is no more to be
recommended than the first; real materials differing inb can
be expected to differ somewhat in both activation energy and
A. The results of the two calculation methods are very simi-
lar. As illustrated in Fig. 5, the qualitative behavior is un-

changed; smallerb is associated with a more intense Debye–
Waller anomaly.

CONCLUSIONS

The main conclusion of the present work is affirmation
of previous indications9,10 that many features of the high
frequency dynamics of glass-forming liquids can be rational-
ized in terms of the coupling model of relaxation. Implicit in
this approach is the idea that many ‘‘anomalies’’ variously
ascribed to anharmonic vibrations, soft phonons, or a fast
beta process,9,10 may in fact be a direct consequence of the
onset of relaxation processes. In particular, the unique as-
pects of relaxation captured by the coupling model — a fast
Debye relaxation at short times transitioning to a slow Kohl-
rausch~stretched exponential! relaxation at longer times —
are found to underlie the high frequency behavior of dense
liquids. We also point out that while in the soft phonon
model7 the pronounced softening of the boson peak modes
aboveTg is responsible for the fast relaxation, to make a
connection to structural relaxation and viscous flow, this
model has to assume a viscosity varying as exp(1/^r 2&). On
the other hand, in the coupling model,^r 2& is immediately
related to structural relaxation and viscous flow.
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FIG. 4. As in Fig. 3, evaluated at 0.5310212 s.

FIG. 5. The variation in the value of̂ r 2& at 0.5310212 s, cal-
culated for variousb using vD53.231012 rad/s, K51.8310227 s2,
tc52310212 s, A59.8310215 s Å22. The activation energy was
adjusted to give a fixed value for the relaxation times atT 5 243 K.
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