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Introduction 
 Impedance spectroscopy and dielectric relaxation measurements yield the same information; 

however, their purpose and analysis methods differ. Impedance spectroscopy is typically used to probe 

electrochemical processes, while dielectric relaxation data, almost invariably expressed in the complex 

permittivity representation, provide information on dynamical processes, typically the rate of molecular 

or polymer chain reorientation. Moreover, the features of interest in an impedance measurement, such 

as the transport and adsorption of charges, are an unwanted contribution to dielectric relaxation 

spectra, and thus are either ignored or removed from the latter. (Occasionally, the impedance function 

representation is used to eliminate interferences with relaxation measurements.) Since the objective of 

dielectric spectroscopy is to characterize the dynamics, models of molecular motion are the basis for 

interpretation; equivalent circuits, prominent in impedance spectroscopy studies, are not employed to 

analyze relaxation spectra. However, since relaxation spectra can be described formally as a distribution 

of exponential relaxation processes [1,2], an equivalent circuit diagram can be constructed (Figure 1 

[3]). Such a description is phenomenological (a mathematical convenience), and its underlying premise, 

that the observed peak shape reflects a distribution of exponential decays, is problematic [4,5]. Table 1 

summarizes the distinct aspects of impedance and dielectric relaxation spectroscopies.  

Dielectric relaxation.  
 The use of dielectric spectroscopy to probe the motion of molecules requires the latter to have a 

nonzero dipole moment, µ. However, with modern instrumentation capable of attofarad resolution, this 

is not a restrictive requirement. Even conventional dielectric bridges can measure polymers with very 

small dipole moments (µ<0.1 D); for example, atactic polypropylene, which has a dielectric strength less 

than 0.01 [6,7]. In the usual relaxation measurement, a weak electric field is applied, with the linear 

response regime defined by two (equivalent) conditions: 

(i) The dielectric permittivity does not vary with the electric field, E; this means that the polarization is 

proportional to E 

 ( ) 0* 1P Eε ε= −   (1) 

where ε* is the complex dielectric permittivity of the material and ε0 the dielectric permittivity of 

vacuum (=8.854 pF/m). 
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(ii) The polarization energy, associated with dipole orientation, is less than the thermal energy; i.e., µE 

<< kT. This means there is no net polarization, as orientation of the dipoles is overcome by thermal 

agitation, and the sample remains isotropic.  

Since the motions prevailing at equilibrium enable the molecular dipoles to remain unoriented 

on average, the measured time-dependent fluctuations of the polarization correspond to the 

equilibrium dynamics. For small molecules (simple liquids) dielectric relaxation spectroscopy probes the 

molecular reorientations. For most polymers the dipole moment is transverse to the chain, so that the 

dielectric experiment probes the local segmental dynamics. For those few polymers having a dipole 

moment component parallel to the backbone (which means their repeat unit structure lacks a 

symmetric center), dielectric relaxation can measure more global dynamics, as discussed below. 

Expressing eq.(1) for the dynamics gives 

 0
( ')( ) ( ') '
'

t dE tP t P t t dt
dt

ε ε∞ −∞
= + −∫   (2) 

in which P∞ accounts for induced polarization (e.g., distortion of the electron cloud), and the second 

term describes the orientation polarization. The usual experiment applies a time-dependent electric 

field, with the complex permittivity obtained as 

 
0

( )*( ) '( ) "( ) exp( i )d ti t dt
dt
εε ω ε ω ε ω ε ω

∞

∞= − = − −∫   (3) 

The relationship to the impedance is 

 
0

1*( )
i *( )CZ

ε ω
ω ω

=   (4) 

where C0 is the vacuum capacitance. In eq.(3) ε∞ is the constant value of the dielectric permittivity 

exhibited by materials at sufficiently high frequencies. 

 The structural relaxation peak (α-process) of liquids and polymers is invariably broader than the 

Debye function (for which the peak has a width at the half intensity points of 1.14 decades) 

 *( )
1 i D

εε ω ε
ωτ∞
∆

= +
+

  (5) 

where τD the Debye relaxation time, and Δε is the dielectric strength (= εs - ε∞ where εs is the static or 

low frequency permittivity). Structural relaxation spectra are usually fit to either the Havriliak-Negami 

(H-N) equation [3] 
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 *( ) 1 (i )
baε ω ε ωτΗΝ

−
 = ∆ +    (6) 

where τHN, a, and b are constants, or the Kohlrausch-Williams-Watts (KWW) function [3]  

 
( )ˆ*( ) i

d t
L

dtω

ϕ
ε ω ε

 
= ∆ − 

 
  (7) 

 ( )( ) exp / K

Kt t βϕ τ = −    (8) 

with τK and βK constants, and ˆ
iLω denotes the Laplace transform. Eq. (6) is empirical, its popularity 

deriving from the ability to fit experimental ε”(ω) peaks. Eq. (8), which has one less adjustable 

parameter than the H-N equation, can be arrived at in various ways: from models based on free volume 

[8], hierarchal constraints [9], defect diffusion [10], defect distances [11], random free energy [12], 

intermolecular cooperativity [13,14], or molecular weight polydispersity [15]. The KWW function can 

also be obtained by employing a particular distribution of exponential decay functions [1,2], illustrated 

by the equivalent circuit in Fig. 1. Secondary relaxations, which fall at higher frequencies, can be 

described by eq.(6) or the symmetric Cole-Cole function [3] 

 1*( )
1 (i )CC

γ

εε ω
ωτ −

∆
=

+
  (9) 

where γ and τcc are constants. Eq. (9) corresponds to the H-N function with b=1, and reduces to the 

Debye function for γ =0. The peak in the dielectric loss spectrum occurs at a frequency corresponding to 

that of the underlying molecular motions (e.g., rotations of small molecules or the local segmental 

dynamics of polymers for their α-relaxation peak). Thus, the inverse of the α-peak frequency defines a 

model-independent relaxation time, τα. Reflecting the stretching of the spectrum toward longer 

frequencies, τα >τK, while the relative magnitudes of τK and τHN depend on the shape parameters, a, b, 

and βK.  

Figure 2 shows the dielectric relaxation spectrum of polymethylmethacrylate (PMMA), which 

has an unusually prominent secondary relaxation. If the latter is well separated from the α-peak, the 

two dispersions can be fit with the assumption that the processes are additive in the frequency domain. 

If the respective τ are close, this assumption breaks down, and an equation due to Williams [16] is used 

 ( ) ( ) ( )(1 )t f t f tα α α βε ε ε= + −   (10) 

Eq. (10) assumes the two relaxations are independent, except that the β process takes place in an 

environment that is rearranging on the timescale of the α-process. The fits of eqs.(6) and (7)-(8), using 
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eq. (10), to the PMMA dielectric constant and loss spectra are shown in the Fig. 2. Note that the 

dielectric loss exhibits power-law behavior at low frequencies, a consequence of mobile ions; this dc-

conductivity is discussed below. 

 The main features of the dielectric spectra of polymers are the α-relaxation peak due to the 

local segmental dynamics and various higher frequency, secondary relaxations due to restricted 

torsional motions of the chain and any side group dynamics. However, polymers having a dipole 

moment parallel to the chain contour (e.g., 1,4-polyisoprene, polypropylene glycol (PPG), polylactide) 

exhibit a so-called normal mode peak due to fluctuations of the chain end-to-end vector [17]. Spectra 

are shown in Figure 3 for PPG and polyoxybutylene (POB) [18], both polymers having dielectrically active 

normal modes. Sometimes referred to as the global or terminal relaxation, the normal mode peak falls 

at lower frequencies than the local segmental dispersion, by an amount nonlinear in the polymer 

molecular weight [5]. At high temperatures the two relaxation processes have equivalent T-

dependences, whereas at temperatures approaching the glass transition, the normal mode relaxation 

time is less sensitive to temperature than the more local α-process [19].  

Ion conductivity. Liquids and polymers invariably contain mobile ions, often electrolytic impurities, 

whose diffusion gives rise to dc-conductivity, σdc (see Fig. 2). In a material that is inherently conducting, 

σdc may correspond to translocation of intrinsic ions across sites on a polymer chain, such as protons 

along hydrogen bonds. This conduction is distinct from the higher frequency ac conductivity, which in 

addition to ion diffusion can arise from nonrelaxing, subdiffusive processes, such as local excursions and 

vibrations of ions within a cage of the host molecules. Whereas a common purpose of impedance 

spectroscopy is to characterize ion diffusion, for relaxation studies σdc is usually unwanted because it 

can mask the relaxation peaks in the loss spectrum. The Nernst equation relates the dc-conductivity to 

the concentration of ions, c, having charge q [20] 

 2 /dc Bcq D k Tσ =   (11) 

where D is the ion diffusion constant and kB the Boltzmann constant. For a frequency dependent 

diffusion constant, D*(ω), the conductivity is complex and yields a term in the permittivity  

 
0

*( )*( )
i
σ ωε ω
ωε

=   (12) 

The usual power-law behavior gives 

 ( )
( )0

*
i
dc

j
σε ω

ε ω
=   (13) 
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with j a constant (≤ 1), equal to unity for free conduction of electrons or ions. This conductivity 

contribution to the dielectric loss can be described by 

 
0

( )"dc
dc

j
σ
ε ω

ωε =   (14) 

Provided there is some separation from the relaxation peaks, eq.(14) can be included in fitting spectra to 

account for the conductivity. 

Ionic conductivity is coupled to reorientational relaxation, since motion of the host molecules or 

segments provides diffusive pathways. This leads to a relation between ion conductivity and the α-

relaxation time [21] 

 j
dc constασ τ =   (15) 

Eq. (15) is an empirical variation of the Debye-Stokes-Einstein (DSE) equation [22], 

 .dc T const
c
ασ τ

=   (16) 

Generally, c and T change little over the range of dielectric measurements, so that σDC is plotted versus 

τα on double logarithmic scales, to yield a power-law having a slope equal to -j. Results are shown in 

Figure 4 for propylene glycol monomer, dimer, and trimer. The exponent (j= 0.84±0.02) is the same for 

the three liquids, although the magnitude of the ion conductivity decreases with increasing molecular 

weight. 

The conductivity behavior described by the fractional DSE eq.(15) can have two origins. Any 

change in the ion population due to polyelectrolytic dissociation or the formation of ion pairs is usually 

neglected in analysis of data (that is, c is assumed constant). And since the effect of temperature and 

pressure on ion population is usually very different from their influence on ion mobility, the result can 

be deviations from proportionality of σdc to the inverse relaxation time. The other cause of departures 

from eq.(16) is more general: As temperature is reduced below approximately 1.2Tg, a reduction in the 

coupling between translational and rotational dynamics is observed [23]. This is manifested in the T-

dependence of translational diffusion becoming weaker than that of the viscosity or the rotational 

dynamics, causing a violation of the DSE equation (Figure 5 [5]). The mechanism underlying this 

decoupling is not well understood. 

 Although dc-conductivity sometimes interferes with characterization of molecular relaxation, 

the dependence of ion diffusion on the α-dynamics can be exploited to obtain information about 

structural relaxation of a glass. By definition, the glassy state corresponds to conditions for which 
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molecular diffusion and rotation (or local segmental motion of a polymer) transpire more slowly than 

the observable time scale; that is, their loss peaks are at frequencies lower than measured by dielectric 

spectroscopy (< 10-4 Hz). However, the cessation of these motions retards, but does not preclude, ion 

diffusion. Thus, below the glass transition ion conduction continues, although the sensitivity of σdc to 

temperature (i.e., the activation energy) and to pressure (the activation volume) both decrease. The 

reduced activation energy below Tg is illustrated in Figure 6 in a plot of the conductivity relaxation time 

(defined below) for an ionic liquid versus temperature [24]. Physical aging (very gradual densification) of 

the glass slows the ion diffusion; the time constant describing this effect corresponds to a structural 

relaxation time, which is too large for direct measurement (below Tg τα in Fig. 6 exceeds 8 hours).  

 An obvious method to minimize the conductivity contribution to the spectrum is to reduce the 

ion concentration. This can be done by successive dissolution-precipitation of the polymer, or by 

application of an electric field to the sample in situ to cause accumulation of the ions at the electrode 

interfaces for subsequent removal [25]. From the Kramers-Kronig relation for the case of j=1 (eq.(16))  

 0
0 02 20

0

2'( ) "( ) dωε ω ε ε ω ω
π ω ω

∞

∞= +
−∫   (17) 

 0
0 02 20

0 0

2"( ) '( )dc dσ ωε ω ε ω ω
ε ω π ω ω

∞
= +

−∫   (18) 

it is seen that the dc-conductivity makes no contribution to the real part of the permittivity; thus, the 

measured ε’(ω) can be converted via eq. (18) to a dielectric loss spectrum without interference from σdc. 

This is illustrated in Figure 7 [26], showing the measured and calculated dielectric loss for a liquid with a 

substantial conductivity. 

 For broad relaxation peaks an approximation to the Kramers-Kronig formula can be used [26] 

 
'( )"( )

2 ln
π ε ωε ω

ω
∂

≈ −
∂

  (19) 

The dc-conductivity is absent from this calculated dielectric loss. An example of the application of eq. 

(19) is included in Fig. 7; it can be seen that the α-peak in the derivative spectrum is artificially narrower 

than in the directly measured ε”(ω), although the frequencies of the maxima, and thus the τα, coincide. 

This derivative analysis can also be employed to shift the effect of electrode polarization toward lower 

frequencies, away from the main relaxation [27]. Electrode polarization refers to blocking of charge 

exchange at the sample-electrode interface, due to the existence of a potential barrier. Mainly arising in 

more conductive systems, electrode polarization causes the measured dielectric constant at low 

frequency to be much larger (in the range 102 – 106) than the actual value for the sample.  



7 

 

Dielectric modulus. The dielectric function ε*(ω) is a compliance, the ratio of the electric displacement 

to the field. Analogous to the mechanical compliance and modulus, a dielectric modulus (“reciprocal 

permittivity”) can be defined 

 2 2

2 2

* ( ) 1 / *( )
''( )

' "
""( )

' "

M

M

M

ω ε ω
εω

ε ε
εω

ε ε

=

=
+

=
+

  (20) 

The permittivity describes the polarization at constant field, and M*(ω) the polarization at constant 

charge. Of course, the modulus representation contains no information not present in the dielectric 

permittivity; however, the dc-conductivity is manifested in the imaginary component, M”(ω), as a peak, 

and the α-relaxation is shifted to higher frequency; thus, the latter is more separated from σdc than 

in the permittivity representation. The amount of this shift of the α-peak depends on the dielectric 

strength of the relaxation; for a Debye process (eq.(5)), , " , "M
s

α ε α
ε
ετ τ
∞

= . This effect and the 

presence of a conductivity peak in M”(ω) are shown in Figure 8. 

The conductivity relaxation time, τσ, is defined as the inverse of the frequency of the 

maximum of the M”(ω) conductivity peak. This relaxation time differs from the microscopic 

correlation time, τion, describing ion movement (e.g., hopping). From a model of random movement 

of ions in a disordered medium, a relation can be obtained between the two quantities [28] 

 
2 2

06ion
B

cq r
k Tστ τ

ε ε∞
=   (21) 

where r is the mean hopping displacement of the ions. 

Use of impedance function in dielectric relaxation experiments. Dielectric relaxation measurements to 

determine the dynamics of polymers and liquids analyze the permittivity, ignoring the impedance. 

However, when measurements are extended to high frequencies (which for a typical dielectric 

relaxation experiment is defined as frequencies beyond ca. 106 Hz), the complex impedance may be 

utilized to remove the effects of the resistance and inductance of electrical cables used to connect the 

sample electrodes to the analyzer. The relevant equation for the resistance R is 

 lim '( )z R
ω

ω
→∞

=   (22) 

and for the inductance L (resistance due to current changes in the cable) 
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 "( ) dz Lω ω
ω

= −   (23) 

where d a constant. The measured impedance functions are then corrected to yield spectra free from 

these effects of the cables 

 corr' ( ) '( )z z Rω ω= −   (24) 

and 

 corr'' ( ) ''( )z L zω ω ω=   (25) 

In turn, the permittivity is calculated from the corrected impedances using eq.(4).  

To apply eqs.(22) and (23) requires dielectric measurements that are free from relaxation peaks; 

i.e., any capacitance changes due to the sample. This can be done by measurements at temperatures 

well below Tg, as illustrated in Figure 9 for a crosslinked polyvinylethylene (PVE). The fit to the real and 

imaginary impedance functions yields respectively R and L for the cable assembly. Eqs. (24) and (25) are 

used to calculate the corrected impedance functions, from which the permittivity is obtained. Figure 10 

illustrates this method to remove the interference from the cables in measurements on the PVE 

network, enabling determination of the actual material response [29]. Because of the low polarity of 

PVE, cable contributions become apparent at relatively low frequencies, ca. 2 kHz. More typically, 

corrections for cable effects are required only for measurements beyond ca. 106 Hz. 

 Another use of the impedance function in dielectric spectroscopy is to remove the effects of 

electrode polarization; that is, charge build-up under low frequency fields at the electrode-sample 

interface. This phenomenon is an example of the Maxwell-Wagner-Sillars (MWS) effect, which is a 

general term for polarization, including at an external electrode or at internal boundary layers within an 

inhomogeneous sample. For the case of an insulating layer covering the electrode, the layer and sample 

impedances are in series, with the measured impedance equal to the sum of the values for the sample, 

zsam, and layer, zins 

 * * *meas sam insz z z= +   (26) 

From eq.(4) 

 
( ) * **

* *
sam ins sam ins

meas
ins sam sam ins

l l
l l

ε εε
ε ε
+

=
+

  (27) 

in which lsam and lins represent the respective thicknesses of the sample and insulating layers. If the 

sample has significant conductivity, it will give rise to a peak due to the interfacial polarization at a 

frequency, fMWS, given by 
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02 ' '

sam
MWS

sam
sam ins

ins

f
l
l

σ

πε ε ε
=

 
+ 

 

  (28) 

Electrode polarization can be exploited to separate the contributions of ion concentration and ion 

mobility to the conductivity [30], although in most relaxation measurements it is an unwanted artifact.  

To suppress dc-conductivity in a dielectric loss spectrum, use is sometimes made of a “blocking 

electrode”, which refers to an insulator film placed between the sample and one of the electrodes. 

Although this method removes the prominent manifestation of σdc in the response, the steep rise in 

ε”(ω) at lower frequencies (eq.(14)), it does not eliminate the effect of conductivity on the relaxation 

spectrum. This is shown in Figure 11 in the dielectric spectrum of xylitol. Introduction of an insulating 

film causes the conductivity contribution to appear as a loss peak that still masks features of the 

spectrum in that frequency range.  

Dielectric discontinuities within a sample can also give rise to spurious MWS peaks. Figure 12 

shows spectra for glycerol [31], in which at frequencies lower than the α-process there is a strong σdc 

contribution, manifested as a power-law in ε”(ω) and a rise at lower frequencies in ε’(ω) due to 

electrode polarization. Using the derivative of the real part to obtain the loss spectrum sans σdc reveals a 

weak MWS peak. The latter can be identified, inter alia, by its occurrence at frequencies for which ε’ ~ 

ε” [32]. Teflon and other polymeric insulators are also commonly used in the form of an annular ring to 

contain liquid samples or as a spacer (ring or fibers) to maintain a constant sample thickness. Since the 

insulators have a finite capacitance, their presence in parallel with the sample can cause a background 

loss that is additive in the permittivity. This can alter Δε and shift the frequency of the peaks in the 

spectrum; typically these errors become significant when the area of the spacer is more than about 0.1% 

of the sample area [33]. 

Summary. Impedance spectroscopy and dielectric relaxation measurements employ similar 

instrumentation, but are used for different purposes. In dielectric spectroscopy the usual objective is 

determination of the dipole reorientation dynamics that underlies, for example, structural relaxation of 

liquids and polymers. Contributions to the spectra from dc-conductivity interfere with the measurement 

of relaxation peaks. This means that the spectral features that comprise the main interest of impedance 

spectroscopic experiments (e.g., bulk ion conduction, grain boundary and electrode/sample interfacial 

resistances) must be eliminated in relaxation studies. In this chapter the basics of dipole relaxation 
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measurements have been outlined, along with a summary of methods used to remove conductivity 

effects from the spectra.  
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Tables 

 

Table 1. Comparison of typical impedance and dielectric experiments 

spectroscopy impedance dielectric 

primary focus 
electrochemical 

(conduction mechanisms 
and interfacial processes) 

reorientation dynamics of 
molecular dipoles 

sample material-electrode 
system (conductive) bulk material (capacitive) 

AC voltage ≤ 10-3 v ≤ 10 v 

DC voltage common rare 

typical analysis equivalent circuits relaxation models 
 

 

  



Figures and Captions 

 

 

  

 
Figure 1. Equivalent circuit diagram for a viscoelastic response characterized by a distribution of n 

exponential decays, along with a contribution from mobile ions. 
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Figure 2. Dielectric spectrum of polymethylmethacrylate, along with the fits of eq. 7 and 8 to the local 

segmental dynamics and eq.6 for the secondary relaxation, at respective low and high frequencies. The 
rise in the loss below ~0.01 Hz is due to ionic conduction, fit with eq.14 using j = 1. 
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Figure 3. Dielectric loss spectra of POB and PPG having the same number of repeat units (= 67), measured at 
T = 20°C and P = 616 MPa (PPG) and T=24°C and P = 351 MPa (POB). The peak frequencies of the respective 
segmental and normal mode relaxations were 71 kHz and 143 Hz for PPG, and 99 kHz and 211 Hz for POB. 
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Figure 4. Conductivity vs α-relaxation time for propylene glycol monomer (circles), dimer (squares), and trimer 

(triangles) at various temperatures and pressures. Lines are fits yielding j=0.84±0.02 for all three liquids. 
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Figure 5. Self-diffusion coefficients of o-terphenyl (filled circles) and tris-naphthylbenzene (filled squares – 
values shifted upward by 0.16) compared to the ratio of temperature to the viscosity (corresponding open 

symbols). The right ordinate was adjusted to give superposition with the diffusion coefficients at high T, 
illustrating the enhancement of translational diffusion close to Tg. Chemical structures are shown. 
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Figure 6. Conductivity relaxation times for carvedilol phosphate (circles), showing the weaker temperature-

sensitivity below the glass transition (indicated by the vertical dashed line). Also shown (filled squares) are the 
time constants obtained from the change in permittivity with physical aging; these correspond to the structural 

relaxation time in the glass, measured directly by calorimetry near Tg (open squares).  
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Figure 7. Dielectric loss of 3-amino toluene as measured (circles), calculated from ε’(ω) using the Kramers-Kronig 

relation (squares), and represented by the derivative of the real part of the permittivity. The last two methods 
suppress the ionic conduction, seen as the power-law at low frequencies, having a slope, -j = 1 in the present 

case. 
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Figure 8. Imaginary component of permittivity (lower) and modulus (upper) of propylene glycol dimer. Ion 

conductivity is manifested in the former as a power-law at lower frequencies, and in the latter as a peak at ~102 
Hz. Note the α-peak shifts about one decade higher frequency in the modulus representation.  
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Figure 9. Real and imaginary permittivity measured for a crosslinked PVE at a temperature sufficiently low that 
no relaxation processes are present in the spectra. The solid lines are the fits of eq.22 to z’ at high frequencies 

and of eq.23 to z”.  
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Figure 10. Dielectric loss of PVE networks at two temperatures below Tg (=9.0C). The rise at high frequencies in 
the measured spectra (triangles) is due to the cables; after correction (inverted triangles) the actual loss peak is 

obtained.  
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Figure 11. Dielectric loss of a polyalcohol with (triangles) and without (circles) a 5 µm Teflon film between the 

sample and upper electrode. The σdc manifested in a power-law at low frequencies becomes a peak around 1 Hz 
when the Teflon is present. The α-peak is seen at higher frequencies. 
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Figure 12. (top) Real (squares) and imaginary (circles) components of dielectric permittivity glycerol, showing 

the dominant dc-conductivity in the loss, which causes electrode polarization seen as a rise in ε’ at frequencies 
below 1 Hz. (bottom) Derivative function (eq.19) in which σdc is manifested as a peak near the frequency at 

which ε’ = ε”. 


